1
|
Oldoni E, Saunders G, Bietrix F, Garcia Bermejo ML, Niehues A, ’t Hoen PAC, Nordlund J, Hajduch M, Scherer A, Kivinen K, Pitkänen E, Mäkela TP, Gut I, Scollen S, Kozera Ł, Esteller M, Shi L, Ussi A, Andreu AL, van Gool AJ. Tackling the translational challenges of multi-omics research in the realm of European personalised medicine: A workshop report. Front Mol Biosci 2022; 9:974799. [PMID: 36310597 PMCID: PMC9608444 DOI: 10.3389/fmolb.2022.974799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Personalised medicine (PM) presents a great opportunity to improve the future of individualised healthcare. Recent advances in -omics technologies have led to unprecedented efforts characterising the biology and molecular mechanisms that underlie the development and progression of a wide array of complex human diseases, supporting further development of PM. This article reflects the outcome of the 2021 EATRIS-Plus Multi-omics Stakeholder Group workshop organised to 1) outline a global overview of common promises and challenges that key European stakeholders are facing in the field of multi-omics research, 2) assess the potential of new technologies, such as artificial intelligence (AI), and 3) establish an initial dialogue between key initiatives in this space. Our focus is on the alignment of agendas of European initiatives in multi-omics research and the centrality of patients in designing solutions that have the potential to advance PM in long-term healthcare strategies.
Collapse
Affiliation(s)
- Emanuela Oldoni
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, Netherlands
- *Correspondence: Gary Saunders, ; Emanuela Oldoni,
| | - Gary Saunders
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, Netherlands
- *Correspondence: Gary Saunders, ; Emanuela Oldoni,
| | - Florence Bietrix
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, Netherlands
| | - Maria Laura Garcia Bermejo
- Biomarkers and Therapeutic Targets Group, Ramon and Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Anna Niehues
- Translational Metabolomic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter A. C. ’t Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czechia
| | - Andreas Scherer
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Katja Kivinen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Esa Pitkänen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tomi Pekka Mäkela
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Łukasz Kozera
- Biobanking and BioMolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC), Graz, Austria
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Anton Ussi
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, Netherlands
| | - Antonio L. Andreu
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, Netherlands
| | - Alain J. van Gool
- Translational Metabolomic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
2
|
Yang S, Zhan X, Tang X, Zhao S, Yu L, Gao M, Luo D, Wang Y, Chang K, Chen M. A multiplexed circulating tumor DNA detection platform engineered from 3D-coded interlocked DNA rings. Bioact Mater 2021; 10:68-78. [PMID: 34901530 PMCID: PMC8637011 DOI: 10.1016/j.bioactmat.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is a critical biomarker not only important for the early detection of tumors but also invaluable for personalized treatments. Currently ctDNA detection relies on sequencing. Here, a platform termed three-dimensional-coded interlocked DNA rings (3D-coded ID rings) was created for multiplexed ctDNA identification. The ID rings provide a ctDNA recognition ring that is physically interlocked with a reporter ring. The specific binding of ctDNA to the recognition ring initiates target-responsive cutting via a restriction endonuclease; the cutting then triggers rolling circle amplification on the reporter ring. The signals are further integrated with internal 3D codes for multiplexed readouts. ctDNAs from non-invasive clinical specimens including plasma, feces, and urine were detected and validated at a sensitivity much higher than those obtained through sequencing. This 3D-coded ID ring platform can detect any multiple DNA fragments simultaneously without sequencing. We envision that our platform will facilitate the implementation of future personalized/precision medicine. A platform termed 3D-coded ID rings was created for multiplexed ctDNA detection. This platform was integrated with two schemes: the ID ring scheme and the 3D-coded scheme. The platform could achieve multiplexed detection with detection limit of 500 copies per million in non-invasive specimens.
Collapse
Affiliation(s)
- Sha Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xinyu Zhan
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Lianyu Yu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853-5701, USA
| | - Yunxia Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.,College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
3
|
Martins-Dias P, Romão L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 2021; 78:4677-4701. [PMID: 33751142 PMCID: PMC11073055 DOI: 10.1007/s00018-021-03809-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.
Collapse
Affiliation(s)
- Patrícia Martins-Dias
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
4
|
Cristoni S, Bernardi LR, Malvandi AM, Larini M, Longhi E, Sortino F, Conti M, Pantano N, Puccio G. A case of personalized and precision medicine: Pharmacometabolomic applications to rare cancer, microbiological investigation, and therapy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8976. [PMID: 33053249 DOI: 10.1002/rcm.8976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Advances in metabolomics, together with consolidated genetic approaches, have opened the way for investigating the health of patients using a large number of molecules simultaneously, thus providing firm scientific evidence for personalized medicine and consequent interventions. Metabolomics is an ideal approach for investigating specific biochemical alterations occurring in rare clinical situations, such as those caused by rare associations between comorbidities and immunosuppression. METHODS Metabolomic database matching enables clear identification of molecular factors associated with a metabolic disorder and can provide a rationale for elaborating personalized therapeutic protocols. Mass spectrometry (MS) forms the basis of metabolomics and uses mass-to-charge ratios for metabolite identification. Here, we used an MS-based approach to diagnose and develop treatment options in the clinical case of a patient afflicted with a rare disease further complicated by immunosuppression. The patient's data were analyzed using proprietary databases, and a personalized and efficient therapeutic protocol was consequently elaborated. RESULTS The patient exhibited significant alterations in homocysteine:methionine and homocysteine:thiodiglycol acid plasma concentration ratios, and these were associated with low immune system function. This led to cysteine concentration deficiency causing extreme oxidative stress. Plasmatic thioglycolic acid concentrations were initially altered and were used for therapeutic follow-up and to evaluate cysteine levels. CONCLUSIONS An MS-based pharmacometabolomics approach was used to define a personalized protocol in a clinical case of rare peritoneal carcinosis with confounding immunosuppression. This personalized protocol reduced both oxidative stress and resistance to antibiotics and antiviral drugs.
Collapse
Affiliation(s)
- Simone Cristoni
- Ion Source & Biotechnologies (ISB) srl, Biotechnology, Bresso, Italy
| | - Luigi Rossi Bernardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica, Biotechnology and cardiovascular medicine, Milan, Italy
| | - Amir Mohammad Malvandi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica, Biotechnology and cardiovascular medicine, Milan, Italy
| | - Martina Larini
- Ion Source & Biotechnologies (ISB) srl, Biotechnology, Bresso, Italy
| | - Ermanno Longhi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica, Biotechnology and cardiovascular medicine, Milan, Italy
| | | | - Matteo Conti
- University Hospital of Bologna Sant'Orsola-Malpighi Polyclinic, Analytical Chemistry, Bologna, Italy
| | | | - Giovanni Puccio
- Emmanuele Scientific Research Association, Analytical Chemistry, Palermo, Italy
| |
Collapse
|