1
|
Chen Z, He Y, Zhang J, Ge Q, Du T, Fan Z, Zhou J, Yang X, Shen B, Wei Z. Inhibition of HPSE/SDC-2 axis-induced epithelial-mesenchymal transition for treating IC/BPS. PLoS One 2025; 20:e0321730. [PMID: 40408331 PMCID: PMC12101628 DOI: 10.1371/journal.pone.0321730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/11/2025] [Indexed: 05/25/2025] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) plagues patients and clinicians with its unclear etiology and pathogenesis, and ineffective treatments. Destruction of epithelial tissue and proliferation of interstitial tissue are typical pathological features of IC/BPS, in which epithelial-mesenchymal transition (EMT) may play an important role. Both the increased urination frequency observed in mice with acute cystitis induced by cyclophosphamide (CYP) and the disruption of the anti-leakage barrier in urothelial cells induced by LPS are associated with the occurrence of EMT. The expression of heparanase 1 (HPSE) and syndecan-2 (SDC-2) is up-regulated in the bladder mucosa of patients with IC, and both of them can promote the development of EMT. Improvement of lower urinary tract symptoms and restoration of the uroepithelial cell anti-leakage barrier in mice with CYP-induced cystitis after treatment with the HPSE inhibitor OGT2115 and inhibited the development of EMT. We then verified that HPSE binds to SDC-2 and that SDC-2 is a key intermediate protein in the pro-EMT role of HPSE, and that EMT was inhibited by knockdown of SDC-2. SDC-2 exerts its biological function by inhibiting the ubiquitinated degradation of TGF-βR1. Here we identified a novel mechanism by which the HPSE/ SDC-2 axis promotes EMT development and thus causes epithelial dysfunction and altered voiding behavior, providing a new direction for the treatment of IC/BPS.
Collapse
Affiliation(s)
- Zhengsen Chen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yuting He
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Qingyu Ge
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Tianpeng Du
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zongyao Fan
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Junyl Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xin Yang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Baixin Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zhongqing Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Owida HA, Saleh RO, Mohammad SI, Vasudevan A, Roopashree R, Kashyap A, Nanda A, Ray S, Hussein A, Yasin HA. Deciphering the role of circular RNAs in cancer progression under hypoxic conditions. Med Oncol 2025; 42:191. [PMID: 40314834 DOI: 10.1007/s12032-025-02727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/14/2025] [Indexed: 05/03/2025]
Abstract
Hypoxia, characterized by reduced oxygen levels, plays a pivotal role in cancer progression, profoundly influencing tumor behavior and therapeutic responses. A hallmark of solid tumors, hypoxia drives significant metabolic adaptations in cancer cells, primarily mediated by hypoxia-inducible factor-1α (HIF-1α), a key transcription factor activated in low-oxygen conditions. This hypoxic environment promotes epithelial-mesenchymal transition (EMT), enhancing cancer cell migration, metastasis, and the development of cancer stem cell-like properties, which contribute to therapy resistance. Moreover, hypoxia modulates the expression of circular RNAs (circRNAs), leading to their accumulation in the tumor microenvironment. These hypoxia-responsive circRNAs regulate gene expression and cellular processes critical for cancer progression, making them promising candidates for diagnostic and prognostic biomarkers in various cancers. This review delves into the intricate interplay between hypoxic circRNAs, microRNAs, and RNA-binding proteins, emphasizing their role as molecular sponges that modulate gene expression and signaling pathways involved in cell proliferation, apoptosis, and metastasis. It also explores the relationship between circRNAs and the tumor microenvironment, particularly how hypoxia influences their expression and functional dynamics. Additionally, the review highlights the potential of circRNAs as diagnostic and prognostic tools, as well as their therapeutic applications in innovative cancer treatments. By consolidating current knowledge, this review underscores the critical role of circRNAs in cancer biology and paves the way for future research aimed at harnessing their unique properties for clinical advancements. Specifically, this review examines the biogenesis, expression patterns, and mechanistic actions of hypoxic circRNAs, focusing on their ability to act as molecular sponges for microRNAs and their interactions with RNA-binding proteins. These interactions impact key signaling pathways related to tumor growth, metastasis, and drug resistance, offering new insights into the complex regulatory networks governed by circRNAs under hypoxic stress.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, Jordan
| | - Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800, Negeri Sembilan, Malaysia.
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hussein
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
3
|
Di Fiore R, Drago-Ferrante R, Suleiman S, Calleja N, Calleja-Agius J. The role of microRNA-9 in ovarian and cervical cancers: An updated overview. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108546. [PMID: 39030109 DOI: 10.1016/j.ejso.2024.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Ovarian and cervical cancers are the two most frequent kind of gynaecological cancers (GCs). In spite of advances in prevention, screening and treatment, cervical cancer still leads to an increased morbidity and mortality worldwide. Ovarian cancer is often detected at a late stage, which significantly reduces the effectiveness of available treatments. Therefore, novel methods are desperately needed to improve the clinical care of GC patients. MicroRNAs, also known as short noncoding RNAs (miRNAs/miRs), are a diverse group of RNAs with a length of 22 nucleotides. These typically cause translational repression and mRNA degradation by interacting with target mRNAs' 3' untranslated region (3'-UTR), together with other regions and gene promoters. Under certain conditions, they are also able to activate translation or regulate transcription. It has been demonstrated that miRNAs are crucial to several biological processes leading to tumorigenesis, including GCs. Recent research has shown that miR-9 affects carcinogenesis. In this review, we will provide an overview of current research on the potential utility of miR-9 in the diagnosis, prognosis, and therapy of ovarian and cervical malignancies.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | - Rosa Drago-Ferrante
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; BioDNA Laboratories, Malta Life Sciences Park, SGN, 3000, San Gwann, Malta.
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Neville Calleja
- Department of Public Health, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| |
Collapse
|
4
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N, Jiao Y. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol 2025; 8:77. [PMID: 39825074 PMCID: PMC11748638 DOI: 10.1038/s42003-024-07383-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer. Additionally, we explore the role of CPIs in tumor drug resistance to gain a deeper understanding of their potential applications in the development of new anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Nan Zhang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Xinjia Wang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yu Li
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yiwei Lu
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Chengcheng Sheng
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yumeng Sun
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Ningye Ma
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| | - Yisheng Jiao
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| |
Collapse
|
5
|
Ding W, Li Z, Liu X, Wang J, Wang J, Jiang G, Yu H, Wang T. Hsa_circ_0008667 promotes progression and improves the prognosis of gastric cancer by inhibiting miR-9-5p. Arab J Gastroenterol 2024; 25:349-355. [PMID: 39455349 DOI: 10.1016/j.ajg.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 09/06/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND AND STUDY AIM Gastric cancer (GC) is one of the most common gastrointestinal tumors characterized by aggressive development and poor prognosis. Circular RNAs (circRNAs) have been used as prognostic biomarkers and therapeutic targets in many cancers, including GC. Hsa_circ_0008667 is differentially expressed in GC; however, its function and clinical significance remained unelucidated. Therefore, this study aimed to investigate the role and significance of hsa_circ_0008667 in GC and its potential as a biomarker and therapeutic target of GC. PATIENTS AND METHODS Through quantitative reverse-transcription real-time PCR, hsa_circ_0008667 expression in GC tissues and cells were analyzed, followed by statistical analyses to assess the clinical significance. Cell Counting Kit-8 and Transwell assays were performed to examine the effects of hsa_circ_0008667 silencing on GC cell growth and metastasis. Additionally, correlation analysis was performed to assess the relationship between hsa_circ_0008667 and miR-9-5p, which was further validated through luciferase reporter assay. RESULTS Hsa_circ_0008667 was considerably upregulated and tightly correlated with lymph node metastasis and the tumor-node-metastasis stage, which was predictive of poor prognosis in patients with GC. Hsa_circ_0008667 silencing suppressed GC cell proliferation, migration, and invasion. Furthermore, hsa_circ_0008667 negatively regulated miR-9-5p expression. MiR-9-5p downregulation enhanced GC malignancy and reversed hsa_circ_0008667 knockdown-mediated GC suppression. CONCLUSION The findings of this study suggest hsa_circ_0008667 to be a prognostic biomarker and tumor promoter of GC via miR-9-5p modulation.
Collapse
Affiliation(s)
- Wei Ding
- Department of Oncology, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Zhengliang Li
- Second Department of Radiotherapy, Yantaishan Hospital, Yantai 264003, China
| | - Xiaojing Liu
- Department of Traditional Chinese Medicine, Yantai Center for Food and Drug Control, Yantai 264003, China
| | - Jundong Wang
- Department of Traditional Chinese Medicine, Yantai Center for Food and Drug Control, Yantai 264003, China
| | - Jiaxi Wang
- Department of Business Management Division II, Yantai Center for Food and Drug Control, Yantai 264003, China
| | - Guoxiang Jiang
- Second Department of Radiotherapy, Yantaishan Hospital, Yantai 264003, China
| | - Haizhou Yu
- Department of Pharmacology and Toxicology, Yantai Center for Food and Drug Control, Yantai 264003, China
| | - Tuya Wang
- Department of Medicine, Hetao College, Bayannur 015000, China.
| |
Collapse
|
6
|
Hou PX, Fan Q, Zhang Q, Liu JJ, Wu Q. M6A-induced transcription factor IRF5 contributes to the progression of cervical cancer by upregulating PPP6C. Clin Exp Pharmacol Physiol 2024; 51:e13868. [PMID: 38745265 DOI: 10.1111/1440-1681.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.
Collapse
Affiliation(s)
- Peng-Xiao Hou
- Department of Traditional Chinese Medicine, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qian Fan
- Department of Traditional Chinese Medicine, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qin Zhang
- Department of Traditional Chinese Medicine, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jia-Jia Liu
- Department of Tumor, Shanxi Traditional Chinese Medicine Institute, Taiyuan, China
| | - Qian Wu
- Department of Traditional Chinese Medicine, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Wang K, Zhang T, Li X, Zhang X, Li R, Pan B, Deng J. Identification of hub genes and potential therapeutic mechanisms related to HPV positive head and neck squamous carcinoma based on full transcriptomic detection and ceRNA network construction. Gene 2024; 910:148321. [PMID: 38428621 DOI: 10.1016/j.gene.2024.148321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Infection with human papillomavirus (HPV) is a major risk factor for head and neck squamous cell carcinoma (HNSCC). The objective of this study is to investigate the gene expression profiles and signaling pathways that are specific to HPV-positive HNSCC (HPV+ HNSCC). Moreover, a competing endogenous RNA (ceRNA) network analysis was utilized to identify the core gene of HPV+ HNSCC and potential targeted therapeutic drugs. Transcriptome sequencing analysis identified 3,253 coding RNAs and 3,903 non-coding RNAs (ncRNAs) that exhibited preferentially expressed in HPV+ HNSCC. Four key signaling pathways were selected through pathway enrichment analysis. By combining ceRNA network and protein-protein interaction (PPI) network topology analysis, RNA Polymerase II Associated Protein 2 (RPAP2), which also exhibited high expression in HPV+ HNSCC based on the TCGA database, was identified as the hub gene. Gene set enrichment analysis (GSEA) results revealed RPAP2's involvement in various signaling pathways, encompassing basal transcription factors, ubiquitin-mediated proteolysis, adherens junction, other glycan degradation, ATP-binding cassette (ABC) transporters, and oglycan biosynthesis. Five potential small molecule targeted drugs (enzastaurin, brequinar, talinolol, phenylbutazone, and afuresertib) were identified using the cMAP database, with enzastaurin showing the highest affinity for RPAP2. Cellular functional experiments confirmed the inhibitory effect of enzastaurin on cell viability of HPV+ HNSCC and RPAP2 expression levels. Additionally, enzastaurin treatment suppressed the expression levels of the top-ranked long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) in the ceRNA network. This study based on the ceRNA network provides valuable insights into the molecular mechanisms and potential therapeutic strategies for HPV+ HNSCC, and provide theoretical basis for the exploration of HPV+ HNSCC biomarkers and the development of targeted drugs.
Collapse
Affiliation(s)
- Kunpeng Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Tingting Zhang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Xia Li
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Xinran Zhang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Boyu Pan
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Jiayin Deng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
8
|
Zhu K, Gou F, Zhao Z, Xu K, Song J, Jiang H, Zhang F, Yang Y, Li J. Circ_0005615 enhances multiple myeloma progression through interaction with EIF4A3 to regulate MAP3K4 m6A modification mediated by ALKBH5. Leuk Res 2024; 141:107451. [PMID: 38663164 DOI: 10.1016/j.leukres.2024.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/06/2024] [Accepted: 01/28/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are associated with development and progression of multiple myeloma (MM). However, the role and mechanism of circ_0005615 in MM have not been elucidated. METHODS Circ_0005615 was determined by GEO database. quantitative RT-PCR was performed to confirm the expression of circ_0005615 in peripheral blood of MM patients and MM cells. The roles of circ_0005615 in MM were analyzed using CCK8, transwell invasion, cell apoptosis and tumor xenograft experiments. Bioinformatics tools, RIP and RNA pull down assays were conducted to explore the downstream of circ_0005615. Furthermore, the mechanism was investigated by quantitative RT-PCR, western blot, dot blot and meRIP-PCR assays. RESULTS Circ_0005615 was upregulated in MM. Overexpression of circ_0005615 promoted cell viability and invasion, and suppressed apoptosis in vitro, which were opposite when circ_0005615 was knockdowned. Mechanistically, EIF4A3, a RNA-binding protein (RBP), could directly bind to circ_0005615 and ALKBH5, where ALKBH5 could directly combine with MAP3K4, forming a circ_0005615- EIF4A3-ALKBH5-MAP3K4 module. Furthermore, circ_0005615 overexpression increased m6A methylation of MAP3K4 by inhibiting ALKBH5, leading to decreased MAP3K4. Further functional experiments indicated that ALKBH5 overexpression weakened the promoting roles of circ_0005615 overexpression in MAP3K4 m6A methylation and tumor progression in MM. The above functions and mechanism were also verified in vivo. CONCLUSIONS Elevated circ_0005615 decreased MAP3K4 mediated by ALKBH5 through interacting with EIF4A3, thereby accelerating MM progression. Circ_0005615 might be a promising biomarker and target of MM.
Collapse
Affiliation(s)
- Kai Zhu
- Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Fengquan Gou
- Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Ziwen Zhao
- Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Ke Xu
- Anhui University of Science and Technology, Taifeng Street 168, Shannan New District, Huainan 232001, China
| | - Jian Song
- Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233030, China
| | - Hongyi Jiang
- Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233030, China
| | - Feng Zhang
- The First Affiliated Hospital of Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Yanli Yang
- The First Affiliated Hospital of Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Jiajia Li
- The First Affiliated Hospital of Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China.
| |
Collapse
|
9
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
10
|
Lian Z, Tian P, Ma S, Chang T, Liu R, Feng Q, Li J. Long noncoding RNA MEG3 regulates cell proliferation and apoptosis by disrupting microRNA-9-5p-mediated inhibition of NDRG1 in prostate cancer. Aging (Albany NY) 2024; 16:1938-1951. [PMID: 38271137 PMCID: PMC10866422 DOI: 10.18632/aging.205472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Long noncoding RNA MEG3 has been described to be involved in the regulation of gene expression and cancer progression. However, the role of lncMEG3 in prostate cancer (PCa) remains largely uncharted. METHODS Differential expression of lncMEG3 was identified in PCa tissues using RNA-sequencing analysis. qRT-PCR was performed to examine the level of lncMEG3. Additionally, cellular fractionation and fluorescent in situ hybridization techniques were employed to determine the localization. Subsequently, functional assays were conducted to evaluate the impact of lncMEG3 and miR-9-5p on PCa proliferation and apoptosis in vitro and in vivo. The interaction between lncMEG3 and miR-9-5p was confirmed using RNA immunoprecipitation. Moreover, luciferase reporter assays were also utilized to investigate the relationship between miR-9-5p and NDRG1. RESULTS We observed downregulation of lncMEG3 in PCa cells and tissues. Patients with lower levels of lncMEG3 had a higher likelihood of experiencing biochemical recurrence. Overexpression of lncMEG3 resulted in the inhibition of PCa cell proliferation and the promotion of apoptosis. Moreover, lncMEG3 is competitively bound to miR-9-5p, preventing its inhibitory effect on the target gene NDRG1. This ultimately led to the inhibition of PCa cell proliferation and the promotion of apoptosis. Furthermore, increasing lncMEG3 levels also demonstrated inhibitory effects on PCa proliferation and promotion of apoptosis in vivo. CONCLUSIONS Our findings uncover a crucial role for lncMEG3 in inhibiting PCa proliferation and promoting apoptosis through disruption of miR-9-5p-mediated inhibition of NDRG1.
Collapse
Affiliation(s)
- Zhenpeng Lian
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Pei Tian
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shenfei Ma
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Taihao Chang
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ranlu Liu
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qingchuan Feng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
11
|
Ren A, Gong F, Liu G, Fan W. NR1H4-mediated circRHOBTB3 modulates the proliferation, metastasis, and Warburg effects of cervical cancer through interacting with IGF2BP3. Mol Cell Biochem 2023; 478:2671-2681. [PMID: 36939994 DOI: 10.1007/s11010-023-04692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Globally, cervical cancer (CC) ranks as the fourth most common cancer and the most lethal malignancy among females of reproductive age. The incidence of CC is increasing in low-income countries, with unsatisfactory outcomes and long-term survival for CC patients. Circular RNAs (CircRNAs) are promising therapeutics that target multiple cancers. In this study, we investigated the tumorigenic role of circRHOBTB3 in CC, showing that circRHOBTB3 is highly expressed in CC cells and circRHOBTB3 knockdown also repressed CC proliferation, migration, invasion, and the Warburg effects. CircRHOBTB3 interacted with the RNA-binding protein, IGF2BP3, to stabilize its expression in CC cells and is putatively transcriptionally regulated by NR1H4. In conclusion, this novel NR1H4/circRHOBTB3/IGF2BP3 axis may provide new insights into CC pathogenesis.
Collapse
Affiliation(s)
- Ailing Ren
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, China
| | - Fan Gong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, China
| | - Guokun Liu
- Outpatient Department, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wenli Fan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Ahmad S, Sayeed S, Bano N, Sheikh K, Raza K. In-silico analysis reveals Quinic acid as a multitargeted inhibitor against Cervical Cancer. J Biomol Struct Dyn 2023; 41:9770-9786. [PMID: 36379678 DOI: 10.1080/07391102.2022.2146202] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
The cervix is the lowermost part of the uterus that connects to the vagina, and cervical cancer is a malignant cervix tumour. One of this cancer's most important risk factors is HPV infection. In the approach to finding an effective treatment for this disease, various works have been done around genomics and drug discovery. Finding the major altered genes was one of the most significant studies completed in the field of cervical cancer by TCGA (The Cancer Genome Atlas), and these genes are TGFBR2, MED1, ERBB3, CASP8, and HLA-A. The greatest genomic alterations were found in the PI3K/MAPK and TGF-Beta signalling pathways, suggesting that numerous therapeutic targets may come from these pathways in the future. We, therefore, conducted a combined enrichment analysis of genes gathered from various works of literature for this study. The final six key genes from the list were obtained after enrichment analysis using GO, KEGG, and Reactome methods. The six proteins against the identified genes were then subjected to a docking-based screening against a library of 6,87,843 prepared natural compounds from the ZINC15 database. The most stable compound was subsequently discovered through virtual screening to be the natural substance Quinic acid, which also had the highest binding affinity for all six proteins and a better docking score. To examine their stability, the study was extended to MM/GBSA and MD simulations on the six docked proteins, and comparative docking-based calculations led us to identify the Quinic Acid as a multitargeted compound. The overall deviation of the compound was less than 2 Å for all the complexes considered best for the biological molecules, and the simulation interaction analysis reveals a huge web of interaction during the simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Salwa Sayeed
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Nagmi Bano
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Kayenat Sheikh
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Yu L, Zhang F, Wang Y. Circ_0005615 Regulates the Progression of Colorectal Cancer Through the miR-873-5p/FOSL2 Signaling Pathway. Biochem Genet 2023; 61:2020-2041. [PMID: 36920708 DOI: 10.1007/s10528-023-10355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
To determine the effects of circ_0005615 in CRC development and underneath mechanism. The expression levels of circ_0005615, microRNA-873-5p (miR-873-5p) and FOS-like antigen 2 (FOSL2) mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of exosome makers, proliferation-related makers and FOSL2 were detected by western blot or immunohistochemistry assay. Cell proliferation was evaluated by cell counting kit-8 (CCK-8) and cell colony formation assays. Cell migration and invasion were demonstrated by a transwell assay. Cell apoptosis was investigated by flow cytometry analysis. The binding relationship between miR-873-5p and circ_0005615 or FOSL2 was predicted by circular RNA interactome and targetscan online databases, respectively, and identified by dual-luciferase reporter assay. The impacts of circ_0005615 silencing on tumor formation were determined by in vivo tumor formation assay. Circ_0005615 expression was dramatically upregulated in serum exosomes of CRC patients compared with the control group. The CRC patients with a high circ_0005615 expression had a poor survival rate. Circ_0005615 and FOSL2 expressions were apparently increased, while miR-873-5p was decreased in CRC tissues or cells relative to control groups. Circ_0005615 knockdown inhibited cell proliferation, migration, and invasion, whereas promoted cell apoptosis in CRC; however, miR-873-5p inhibitor attenuated these impacts. Additionally, circ_0005615 acted as a sponge of miR-873-5p and miR-873-5p bound to FOSL2. FOSL2 overexpression restrained the effects of miR-873-5p mimic on CRC progression. Furthermore, circ_0005615 knockdown suppressed tumor growth in vivo. Circ_0005615 modulated CRC malignant progression by controlling FOSL2 expression through sponging miR-873-5p. This finding lays a foundation for the study on circRNA-mediated CRC therapy.
Collapse
Affiliation(s)
- Lihua Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, China
| | - Feifei Zhang
- Department of General Surgery, Maternity and Child Health Care of Laizhou, No. 288 Wenhua East Street, Laizhou, 261400, Shandong, People's Republic of China
| | - Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Luo X, Liu J, Wang X, Wang Y, Yuan J, Zhang Y. Circ_0005615 promotes cervical cancer cell growth and metastasis by modulating the miR-138-5p/KDM2A axis. J Biochem Mol Toxicol 2023; 37:e23410. [PMID: 37393518 DOI: 10.1002/jbt.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/25/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Cervical cancer (CC) is a highly fatal gynecological malignancy due to its high metastasis and recurrence rate. Circular RNA (circRNA) has been regarded as a regulator of CC. However, the underlying molecular mechanism of circ_0005615 in CC remains unclear. The levels of circ_0005615, miR-138-5p, and lysine demethylase 2A (KDM2A) were measured using qRT-PCR or western blot. Cell proliferation was assessed by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, and colony formation experiments. Cell invasion and migration were tested by transwell assay and wound healing assay. Flow cytometry and Caspase-Glo 3/7 Assay kit were used to analyze cell apoptosis. The expression of proliferation-related and apoptosis-related markers was detected by western blot. The binding relationships among circ_0005615, miR-138-5p, and KDM2A were verified by dual-luciferase reporter assay or RNA immunoprecipitation assay. Xenograft assay was applied to detect the effect of circ_0005615 in vivo. Circ_0005615 and KDM2A were upregulated, while miR-138-5p was downregulated in CC tissues and cells. Circ_0005615 knockdown retarded cell proliferation, migration, and invasion, while promoting apoptosis. Besides, circ_0005615 sponged miR-138-5p, and miR-138-5p could target KDM2A. miR-138-5p inhibitor reversed the regulation of circ_0005615 knockdown on CC cell growth and metastasis, and KDM2A overexpression also abolished the inhibitory effect of miR-138-5p on CC cell growth and metastasis. In addition, we also discovered that circ_0005615 silencing inhibited CC tumor growth in vivo. Circ_0005615 acted as a tumor promoter in CC by regulating the miR-138-5p/KDM2A pathway.
Collapse
Affiliation(s)
- Xiaoning Luo
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiewen Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiangcai Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yili Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Yuan
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu Zhang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
15
|
Xie H, Lu X. circNFATC3 facilitated the progression of oral squamous cell carcinoma via the miR-520h/LDHA axis. Open Med (Wars) 2023; 18:20230630. [PMID: 37398901 PMCID: PMC10308242 DOI: 10.1515/med-2023-0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/16/2022] [Accepted: 01/05/2023] [Indexed: 07/04/2023] Open
Abstract
The aim of this study was to verify the effects of circular RNA nuclear factor of activated T-cells, cytoplasmic 3 (circNFATC3), in oral squamous cell carcinoma (OSCC) development. The levels of circNFATC3, microRNA-520h (miR-520h), and lactate dehydrogenase A (LDHA) were measured by qRT-PCR and western blot analysis. The cellular functions were assessed by using commercial kits, MTT assay, EdU assay, flow cytometry analysis, and transwell assay. The interactions between miR-520h and circNFATC3 or LDHA were confirmed by dual-luciferase reporter assay. Finally, the mice test was enforced to evaluate the character of circNFATC3. We observed that the contents of circNFATC3 and LDHA were upregulated and miR-520h levels were downregulated in OSCC tissues compared with those in paracancerous tissues. For functional analysis, circNFATC3 knockdown repressed the cell glycolysis metabolism, cell proliferation, migration, and invasion, although it improved cell apoptosis in OSCC cells. LDHA could regulate the development of OSCC. circNFATC3 acted as a miR-520h sponge to modulate LDHA expression. In addition, the absence of circNFATC3 subdued tumor growth in vivo. In conclusion, circNFATC3 promoted the advancement of OSCC by adjusting the miR-520h/LDHA axis.
Collapse
Affiliation(s)
- Hongguo Xie
- Department of Stomatology, Jingmen No. 1 People’s Hospital, Jingmen, 448000, Hubei, China
| | - Xiaopeng Lu
- Department of Stomatology, Jingmen No. 1 People’s Hospital, No. 168, Xiangshan Avenue, Duodao District,, Jingmen, 448000, Hubei, China
| |
Collapse
|
16
|
Zhang Q, Duan H, Yang W, Liu H, Tao X, Zhang Y. Circ_0005615 restrains the progression of multiple myeloma through modulating miR-331-3p and IGF1R regulatory cascade. J Orthop Surg Res 2023; 18:356. [PMID: 37173768 PMCID: PMC10176712 DOI: 10.1186/s13018-023-03832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Circular RNAs are implicated in modulating the progression of various malignant tumors. However, the function and underlying mechanisms of circ_0005615 in multiple myeloma (MM) remain unclear. METHODS The expression levels of circ_0005615, miR-331-3p and IGF1R were tested by quantitative real-time polymerase chain reaction or western blot assay. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) assay were performed for cell proliferation detection. Cell apoptosis and cell cycle were measured by flow cytometry. The protein expressions of Bax and Bcl-2 were detected by western blot assay. Glucose consumption, lactate production and ATP/ADP ratios were estimated to disclose cell glycolysis. The interaction relationship among miR-331-3p and circ_0005615 or IGF1R was proved by dual-luciferase reporter assay. RESULTS The abundance of circ_0005615 and IGF1R was increased in MM patients and cells, while the expression of miR-331-3p was decreased. Circ_0005615 inhibition retarded the proliferation and cell cycle progression, while reinforced the apoptosis of MM cells. Molecularly, circ_0005615 could sponge miR-331-3p, and the repressive trends of circ_0005615 deficiency on MM progression could be alleviated by anti-miR-331-3p introduction. Additionally, IGF1R was validated to be targeted by miR-331-3p, and IGF1R overexpression mitigated the suppressive function of miR-331-3p on MM development. Furthermore, IGF1R was mediated by circ_0005615/miR-331-3p axis in MM cells. CONCLUSION Circ_0005615 downregulation blocked MM development by targeting miR-331-3p/IGF1R axis.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Hui Duan
- Center for Local Diseases and Chronic Diseases, Dongsheng District Center for Disease Control and Preventio, Ordos, 017000, Inner Mongolia, China
| | - Wupeng Yang
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Hao Liu
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Xiaoyang Tao
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Yan Zhang
- Department of Medical Imaging, Ordos Central Hospital, No. 23, Yijinhuoluoxi Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China.
| |
Collapse
|
17
|
Wang X, Zheng D, Wang C, Chen W. Knockdown of circ_0005615 enhances the radiosensitivity of colorectal cancer by regulating the miR-665/NOTCH1 axis. Open Med (Wars) 2023; 18:20230678. [PMID: 37727322 PMCID: PMC10506669 DOI: 10.1515/med-2023-0678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 09/21/2023] Open
Abstract
Radiotherapy resistance is a challenge for colorectal cancer (CRC) treatment. Circular RNAs (circRNAs) play vital roles in the occurrence and development of CRC. This study aimed to investigate the role of circ_0005615 in regulating the radiosensitivity of CRC. The levels of circ_0005615, microRNA-665 (miR-665), and notch receptor 1 (NOTCH1) were detected by quantitative real-time PCR or western blot. The radiosensitivity of CRC cells was assessed by colony formation assay. Cell viability, apoptosis, and colony formation were assessed by Cell Counting Kit-8 assay, flow cytometry, and colony formation assay. Cell migration and invasion were confirmed by transwell assay and scratch assay. The binding relationship between miR-665 and circ_0005615 or NOTCH1 was verified by dual-luciferase reporter assay. Xenograft assay was used to test the effect of circ_0005615 on radiosensitivity in vivo. circ_0005615 and NOTCH1 were up-regulated, and miR-665 was down-regulated in CRC tissues and cells. Radiation decreased circ_0005615 and NOTCH1 levels and increased miR-665 level. Knockdown of circ_0005615 enhanced radiosensitivity of CRC cells. Moreover, circ_0005615 sponged miR-665 to regulate the radioresistance of CRC cells. Besides, miR-665 targeted NOTCH1 to mediate the radiosensitivity of CRC cells. Furthermore, circ_0005615 depletion increased CRC radiosensitivity in vivo. circ_0005615 silencing elevated radiosensitivity of CRC by regulating miR-665/NOTCH1 axis.
Collapse
Affiliation(s)
- Ximin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Licheng, Quanzhou, Fujian, 362000, P. R. China
| | - Dongxu Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng, Quanzhou, Fujian, 362000, P. R. China
| | - Changting Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Licheng, Quanzhou, Fujian, 362000, P. R. China
| | - Wanhua Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Licheng, Quanzhou, Fujian, 362000, P. R. China
| |
Collapse
|
18
|
Liu H, Ma H, Li Y, Zhao H. Advances in epigenetic modifications and cervical cancer research. Biochim Biophys Acta Rev Cancer 2023; 1878:188894. [PMID: 37011697 DOI: 10.1016/j.bbcan.2023.188894] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Cervical cancer (CC) is an important public health problem for women, and perspectives and information regarding its prevention and treatment are quickly evolving. Human papilloma virus (HPV) has been recognized as a major contributor to CC development; however, HPV infection is not the only cause of CC. Epigenetics refers to changes in gene expression levels caused by non-gene sequence changes. Growing evidence suggests that the disruption of gene expression patterns which were governed by epigenetic modifications can result in cancer, autoimmune diseases, and various other maladies. This article mainly reviews the current research status of epigenetic modifications in CC based on four aspects, respectively DNA methylation, histone modification, noncoding RNA regulation and chromatin regulation, and we also discuss their functions and molecular mechanisms in the occurrence and progression of CC. This review provides new ideas for early screening, risk assessment, molecular targeted therapy and prognostic prediction of CC.
Collapse
|
19
|
Karagiorgou Z, Fountas PN, Manou D, Knutsen E, Theocharis AD. Proteoglycans Determine the Dynamic Landscape of EMT and Cancer Cell Stemness. Cancers (Basel) 2022; 14:5328. [PMID: 36358747 PMCID: PMC9653992 DOI: 10.3390/cancers14215328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 03/15/2024] Open
Abstract
Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.
Collapse
Affiliation(s)
- Zoi Karagiorgou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Panagiotis N. Fountas
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9010 Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
20
|
Circ_0005615 contributes to the progression and Bortezomib resistance of multiple myeloma by sponging miR-185-5p and upregulating IRF4. Anticancer Drugs 2022; 33:893-902. [PMID: 36136989 DOI: 10.1097/cad.0000000000001378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Circular RNAs (circRNAs) have been shown to play critical regulatory roles in multiple myeloma progression. Here, we aimed to explore the biologic role of circ_0005615 in multiple myeloma progression and its associated mechanism. Cell counting kit-8 assay was conducted to analyze the bortezomib resistance and proliferation of multiple myeloma cells. Cell proliferation was also analyzed by 5-Ethynyl-2'-deoxyuridine incorporation and flow cytometry assays. Cell apoptosis was assessed by flow cytometry. The interaction between microRNA-185-5p (miR-185-5p) and circ_0005615 or interferon regulatory factor 4 (IRF4) was verified by the dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. A xenograft tumor model was established in non-obese diabetic/server combined immune-deficiency mice to analyze the roles of circ_0005615 in tumor growth and bortezomib resistance. Circ_0005615 was upregulated in multiple myeloma tissues and cell lines. Circ_0005615 knockdown restrained the bortezomib resistance and proliferation and induced the apoptosis of multiple myeloma cells. Circ_0005615 acted as a molecular sponge for miR-185-5p, and the antitumor effects mediated by circ_0005615 knockdown were reversed by silencing miR-185-5p. IRF4 was confirmed as a direct target of miR-185-5p, and miR-185-5p overexpression-induced antitumor influences could be counteracted by IRF4 overexpression. Circ_0005615 could positively regulate IRF4 expression by sponging miR-185-5p in multiple myeloma cells. Circ_0005615 knockdown suppressed the growth and bortezomib resistance of xenograft tumors in vivo. Circ_0005615 contributed to the malignant progression and bortezomib resistance of multiple myeloma through mediating miR-185-5p/IRF4 signaling.
Collapse
|
21
|
Lin H, Long F, Zhang X, Wang P, Wang T. Upregulation of circ_0008812 and circ_0001583 predicts poor prognosis and promotes breast cancer proliferation. Front Mol Biosci 2022; 9:1017036. [PMID: 36200070 PMCID: PMC9527282 DOI: 10.3389/fmolb.2022.1017036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Accumulating evidence suggests that circular RNAs (circRNAs) are highly correlated with tumor progression and pathogenesis in breast cancer. Whereas, their regulatory roles and corresponding mechanisms in breast cancer are still not exhaustive. Thus, we intended to establish circRNA-mediated competive endogenous RNA (ceRNA) network to uncover the possible roles and clinical implications of circRNAs in breast cancer. Methods: Microarray and RNA-sequencing (RNA-seq) data were download from GEO and TCGA database to screen for differentially expressed RNAs (DEcircRNAs, DEmiRNAs, DEmRNAs) in breast cancer. By implementing online databases, we established ceRNA networks, performed gene set enrichment analysis, constructed protein-protein interaction (PPI) networks, and assessed the expression levels and prognostic significance of hub genes. Subsequently, we explored the functions of prognosis-related genes and constructed gene-drug interaction networks. Finally, the functional roles of DEcircRNAs in breast cancer were revealed via MTT and colony formation assay. Results: Based on the identified 8 DEcircRNAs, 25 miRNAs and 216 mRNAs, a ceRNA regulatory network was established. Further analysis revealed that prominent enrichments were transcription factor binding, transforming growth factor-beta (TGF-β) and Apelin signaling pathway etc. PPI network and survival curves analysis showed that elevated levels of hub genes (RACGAP1 and KPNA2) were associated with poorer prognosis. They were found to be positively relevant to cell cycle and proliferation. Then a prognostic sub-network of ceRNA was constructed, consisting of 2 circRNAs, 4 miRNAs and 2 mRNAs. The gene-drug interaction network showed that numerous drugs could regulate the expression of these two prognosis-related genes. Functional experiments showed that depletion of circ_0008812 and circ_0001583 could significantly inhibit the proliferation of MCF-7 cells. Conclusion: Our study constructed 4 prognostic regulatory axes that are significantly correlated with tumor prognosis in breast cancer patients, and uncover the roles of circ_0008812 and circ_0001583 in breast cancer, providing a new perspective into the molecular mechanisms of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Hong Lin
- Department of Clinical Research, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Xiqian Zhang
- Department of Pharmacy, The Third People's Hospital of Chengdu & College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Wang H, Cheng G, Quan L, Qu H, Yang A, Ye J, Feng Y, Li X, Shi X, Pan H. Sevoflurane inhibits the malignant phenotypes of glioma through regulating miR-146b-5p/NFIB axis. Metab Brain Dis 2022; 37:1373-1386. [PMID: 35386035 DOI: 10.1007/s11011-022-00959-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Sevoflurane is a common used inhaled anesthetic that was reported to regulate the progression of multiple cancers. Here, we aimed to investigate the function and regulatory mechanism underlying sevoflurane in glioma cells. METHODS A172 and U251 cells were treated with different concentrations of sevoflurane. Colony formation, EdU satining and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, and transwell assays were performed to evaluate cell proliferation, apoptosis, migration and invasion, respectively. Circ_VCAN, microRNA-146b-5p (miR-146b-5p) and nuclear factor I B (NFIB) expression levels were assessed by real-time quantitative PCR (RT-qPCR) or western blot. Bioinformatics analysis and dual-luciferase reporter assay were applied to evaluate the correlation between miR-146b-5p and circ_VCAN or NFIB. A xenograft glioma mice model was established to verify the effect of sevoflurane on tumor growth in vivo. RESULTS Sevoflurane (Sev) inhibited proliferation, migration, invasion, and elevated apoptosis of A172 and U251 cells. Sevoflurane treatment inhibited the expression of circ_VCAN and NFIB, but elevated the expression of miR-146b-5p in glioma cells. Overexpression of circ_VCAN alleviated the inhibition effects of sevoflurane on the malignant phenotypes of glioma in vitro and in vivo. Besides, miR-146b-5p is a target of circ_VCAN and negatively regulated NFIB expression. Overexpression of miR-146b-5p partly reversed the effects of circ_VCAN in Sev-treated glioma cells. Furthermore, miR-146b-5p deletion enhanced glioma progression in sevoflurane treated glioma cells by targeting NFIB. Moreover, circ_VCAN could upregulate NFIB expression by sponging miR-146b-5p in Sev-treated glioma cells. CONCLUSION Sevoflurane alleviated proliferation, migration and invasion, but enhanced apoptosis of glioma cells through regulating circ_VCAN/miR-146b-5p/NFIB axis.
Collapse
Affiliation(s)
- Haili Wang
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | - Guofang Cheng
- Department of Orthopaedic, Sanmenxia Orthopaedic Hospital, Sanmenxia, Henan, China
| | - Lili Quan
- Department of Gynecology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | - Haibo Qu
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | - Ailing Yang
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | - Jiangge Ye
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | - Yuanbo Feng
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | - Xiaofang Li
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | - Xiaoli Shi
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | - Hua Pan
- Department of Anesthesiology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China.
| |
Collapse
|
23
|
Najafi S. Circular RNAs as emerging players in cervical cancer tumorigenesis; A review to roles and biomarker potentials. Int J Biol Macromol 2022; 206:939-953. [PMID: 35318084 DOI: 10.1016/j.ijbiomac.2022.03.103] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 01/10/2023]
Abstract
Cervical cancer is the most lethal gynecological cancer among women worldwide. Most of the patients are diagnosed at the advanced stages due to late diagnosis and lack of accessible and valuable approaches for early detection of the disease. Circular RNAs (circRNAs) are a distinguishable class of non-coding RNAs with characteristic loop structures. Although their function has not been completely elucidated; however, recent evidence has suggested regulatory functions for circRNAs on gene expression controlling various biological functions like cell growth and apoptosis, development, embryogenesis, and pathogenesis of human diseases particularly cancers. Studies show the role of dysregulated circRNAs in biological processes including cell proliferation, migration, invasion, apoptosis, angiogenesis, and chemoresistance contributing to affect tumorigenesis in ovarian cancer cells, animal, and clinical studies. These effects can be defined as consistent with several tumorigenesis characteristics, which are defined as "hallmarks of cancer". Additionally, dysregulated circRNAs exhibit prognostic, and diagnostic potentials both in the prediction of prognosis in ovarian cancer patients, and also their discrimination from healthy individuals. Furthermore, targeting circRNAs has shown positive results in the suppression of malignant features of cancer cells, and also in overcoming chemoresistance. In this review, I have gathered the majority of studies evaluating the role of circRNAs in the development, and progression of cervical cancer, and also have discussed prognostic, diagnostic, and therapeutic potentials of circRNAs for clinical applications in cervical cancer patients.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Tuminello S, Zhang Y, Yang L, Durmus N, Snuderl M, Heguy A, Zeleniuch-Jacquotte A, Chen Y, Shao Y, Reibman J, Arslan AA. Global DNA Methylation Profiles in Peripheral Blood of WTC-Exposed Community Members with Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095104. [PMID: 35564499 PMCID: PMC9105091 DOI: 10.3390/ijerph19095104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022]
Abstract
Breast cancer represents the most common cancer diagnosis among World Trade Center (WTC)-exposed community members, residents, and cleanup workers enrolled in the WTC Environmental Health Center (WTC EHC). The primary aims of this study were (1) to compare blood DNA methylation profiles of WTC-exposed community members with breast cancer and WTC-unexposed pre-diagnostic breast cancer blood samples, and (2) to compare the DNA methylation differences among the WTC EHC breast cancer cases and WTC-exposed cancer-free controls. Gene pathway enrichment analyses were further conducted. There were significant differences in DNA methylation between WTC-exposed breast cancer cases and unexposed prediagnostic breast cancer cases. The top differentially methylated genes were Intraflagellar Transport 74 (IFT74), WD repeat-containing protein 90 (WDR90), and Oncomodulin (OCM), which are commonly upregulated in tumors. Probes associated with established tumor suppressor genes (ATM, BRCA1, PALB2, and TP53) were hypermethylated among WTC-exposed breast cancer cases compared to the unexposed group. When comparing WTC EHC breast cancer cases vs. cancer-free controls, there appeared to be global hypomethylation among WTC-exposed breast cancer cases compared to exposed controls. Functional pathway analysis revealed enrichment of several gene pathways in WTC-exposed breast cancer cases including endocytosis, proteoglycans in cancer, regulation of actin cytoskeleton, axon guidance, focal adhesion, calcium signaling, cGMP-PKG signaling, mTOR, Hippo, and oxytocin signaling. The results suggest potential epigenetic links between WTC exposure and breast cancer in local community members enrolled in the WTC EHC program.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- Correspondence: (S.T.); (A.A.A.)
| | - Yian Zhang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
| | - Lei Yang
- Foundation Medicine, Cambridge, MA 02141, USA;
| | - Nedim Durmus
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
| | - Adriana Heguy
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
- NYU Langone’s Genome Technology Center, New York, NY 10016, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Alan A. Arslan
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY 10016, USA
- Correspondence: (S.T.); (A.A.A.)
| |
Collapse
|
25
|
Zhang K, Wang Q, Zhao D, Liu Z. Circular RNA circMMP1 Contributes to the Progression of Glioma Through Regulating TGIF2 Expression by Sponging miR-195-5p. Biochem Genet 2021; 60:770-789. [PMID: 34471941 DOI: 10.1007/s10528-021-10119-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Glioma is characterized by high morbidity and mortality worldwide. Circular RNA (circRNA) matrix metallopeptidase 1 (circMMP1, hsa_circ_0024108) was reported to be increased in glioma. This study is designed to explore the role and mechanism of circMMP1 in glioma progression. CircMMP1, linear MMP1, microRNA-195-5p (miR-195-5p), and transforming growth factor-beta-induced 2 (TGIF2) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein levels of TGIF2, Beclin1, and p62 were examined by Western blot assay. Colony number, migration, invasion, and apoptosis were detected by Colony formation, transwell, and flow cytometry assays, severally. The binding relationship between miR-195-5p and circMMP1 or TGIF2 was predicted by starbase or Targetscan and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of circMMP1 on glioma cell growth was examined by the xenograft tumor model in vivo. CircMMP1 and TGIF2 expression were upregulated, and miR-195-5p expression was downregulated in glioma tissues and cells. And the knockdown of circMMP1 could block colony formation, migration, and invasion and expedite apoptosis and autophagy in glioma cells. The mechanical analysis discovered that circMMP1 acted as a sponge of miR-195-5p to regulate TGIF2 expression. CircMMP1 knockdown suppressed cell growth of glioma in vivo. CircMMP1 boosted glioma progression partly by targeting the miR-195-5p/TGIF2 axis, suggesting a promising circRNA-targeted therapy for glioma treatment.
Collapse
Affiliation(s)
- Kuiming Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dehao Zhao
- Department of Neurosurgery, Baoshan People's Hospital, Baoshan, Yunnan, China
| | - Zhen Liu
- Department of Neurosurgery, Nanyang Second General Hospital, No. 66 Jianshe East Road, Nanyang City, 473012, Henan Province, China.
| |
Collapse
|
26
|
Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1. J Immunol Res 2021; 2021:9964538. [PMID: 34136582 PMCID: PMC8175136 DOI: 10.1155/2021/9964538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
As the second largest gynecological cancer, cervical cancer has been widely reported in recent years in which circular RNA is involved in the disease process. We earlier found that the expression of hsa_circ_0000511 in cervical cancer cells increased significantly, but its role in the process of cervical cancer is not clear. The purpose of this study is to explore its possible mechanisms in cervical cancer. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), cell counting kit-8 assay, Transwell test, cell transfection, RNA pull-down assay and dual-luciferase reporter assay, and Western blot analysis were used to detect the expression and distribution of hsa_circ_0000511 in SiHa and HeLa cells, the ability of invasion and proliferation, and the modulated relationships between hsa_circ_0000511 and hsa-mir-296-5p, hsa-mir-296-5p, and HMGA1. hsa_circ_0000511 had the highest expression in SiHa and HeLa cells, and the expression in the cytoplasm was significantly higher than that in the nucleus, and its expression was not affected by RNase R. When hsa_circ_0000511 was silenced, its expression in SiHa and HeLa cells was significantly decreased; the proliferation, invasion, and migration abilities of the two kinds of cells were significantly enhanced; and the protein expression of E-cadherin was significantly upregulated, while the protein expression of N-cadherin was significantly downregulated. The expression of hsa-mir-296-5p was lower in SiHa and HeLa cells; however, its expression was increased when hsa_circ_0000511 was inhibited and decreased when hsa_circ_0000511 was overexpressed, so did the ability of proliferation, invasion, and migration and the protein expression of E-cadherin. Interestingly, the protein expression of HMGA1 also changed in these two cells when hsa-mir-296-5p was inhibited or overexpressed. Our results indicate that the upregulated hsa_circ_0000511 can inhibit the proliferation, invasion, and migration of SiHa and HeLa cells by regulating hsa-mir-296-5p/HMGA1, suggesting that the hsa_circ_0000511/hsa-mir-296-5p/HMGA1 pathway may be a potential target for the treatment of cervical cancer.
Collapse
|
27
|
Zhang L, Zhang K, Liu S, Zhang R, Yang Y, Wang Q, Zhao S, Yang L, Zhang Y, Wang J. Identification of a ceRNA Network in Lung Adenocarcinoma Based on Integration Analysis of Tumor-Associated Macrophage Signature Genes. Front Cell Dev Biol 2021; 9:629941. [PMID: 33738286 PMCID: PMC7960670 DOI: 10.3389/fcell.2021.629941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
As research into tumor-immune interactions progresses, immunotherapy is becoming the most promising treatment against cancers. The tumor microenvironment (TME) plays the key role influencing the efficacy of anti-tumor immunotherapy, in which tumor-associated macrophages (TAMs) are the most important component. Although evidences have emerged revealing that competing endogenous RNAs (ceRNAs) were involved in infiltration, differentiation and function of immune cells by regulating interactions among different varieties of RNAs, limited comprehensive investigation focused on the regulatory mechanism between ceRNA networks and TAMs. In this study, we aimed to utilize bioinformatic approaches to explore how TAMs potentially influence the prognosis and immunotherapy of lung adenocarcinoma (LUAD) patients. Firstly, according to TAM signature genes, we constructed a TAM prognostic risk model by the least absolute shrinkage and selection operator (LASSO) cox regression in LUAD patients. Then, differential gene expression was analyzed between high- and low-risk patients. Weighted gene correlation network analysis (WGCNA) was utilized to identify relevant gene modules correlated with clinical characteristics and prognostic risk score. Moreover, ceRNA networks were built up based on predicting regulatory pairs in differentially expressed genes. Ultimately, by synthesizing information of protein-protein interactions (PPI) analysis and survival analysis, we have successfully identified a core regulatory axis: LINC00324/miR-9-5p (miR-33b-5p)/GAB3 (IKZF1) which may play a pivotal role in regulating TAM risk and prognosis in LUAD patients. The present study contributes to a better understanding of TAMs associated immunosuppression in the TME and provides novel targets and regulatory pathway for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhe Zhang
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Song Zhao
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaxiang Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|