1
|
Adams MS, Enichen E, Demmig-Adams B. Reframing Diabetes Prevention: From Body Shaming to Metabolic Reprogramming. Am J Lifestyle Med 2025; 19:168-191. [PMID: 39981552 PMCID: PMC11836583 DOI: 10.1177/15598276231182655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
This review integrates new developments in psychology with updated physiological insight on the complex relationships among chronic psychological stress (arising from weight stigmatization and body shaming), food composition, physical activity and metabolic health for the example of diabetes. We address how visual measures of health, such as body mass index (BMI) and waist-to-hip ratio, do not adequately capture metabolic health and can instead contribute to weight stigmatization, chronic stress, and system-wide impairment of metabolic health. We also emphasize the importance of food composition over calorie counting. We summarize how chronic stress interacts with nutritional deficiencies and physical inactivity to disrupt the stress response, immune response, gut microbiome, and function of fat depots. We specifically address how interactions among lifestyle factors and the gut microbiome regulate whether fat stored around the waist has a negative or positive effect on metabolic health. We aim to provide a resource and updated framework for diabetes prevention and health promotion by (i) highlighting metabolic imbalances triggered by lifestyle changes during the transition to industrialized society and (ii) detailing the potential to support metabolic health through access to modest, but comprehensive lifestyle adjustments.
Collapse
Affiliation(s)
- Melanie S Adams
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, USA
| | | | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Noori H, Majidpour M, Sabeti Akbar-Abad M, Saravani R. Association of polymorphisms within P2RX4 with type 2 diabetes mellitus: a preliminary case-control study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:397-407. [PMID: 38954847 DOI: 10.1080/15257770.2024.2373300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a complex heterogenic metabolic with a wide range of etiology. Purinergic receptors have pivotal roles in different processes and are hypothesized to have roles in the pathogenesis of T2DM. MATERIALS AND METHODS Three hundred subjects affected by T2DM and 300 healthy subjects were genotyped by amplification refractory mutation system polymerase chain reaction (ARMS-PCR). SPSS V16.0 was recruited for statistical analysis. RESULTS The findings showed that the G allele of rs25644A > G increases the risk of T2DM in our population statistically (OR = 1.51, 95% CI = 1.14-1.99, p = 0.003). This allele in some genotype models, including the dominant model, caused an increase in the risk of T2DM. The interaction of genotypes between studied variants in the P2XR4 gene increased the risk of T2DM. Haplotype analysis showed that Ars1169727/Grs25644 haplotype caused an increase in the risk of T2DM. CONCLUSIONS The findings suggest that rs25644A > G plays a role in our population's increased risk of T2DM.
Collapse
Affiliation(s)
- Homa Noori
- Department of Biology, Payame Noor University of Mashhad, Iran
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahboobeh Sabeti Akbar-Abad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
3
|
Massarenti L, Aniol-Nielsen C, Enevold C, Toft-Hansen H, Nielsen CH. Influence of Insulin Receptor Single Nucleotide Polymorphisms on Glycaemic Control and Formation of Anti-Insulin Antibodies in Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms23126481. [PMID: 35742925 PMCID: PMC9223446 DOI: 10.3390/ijms23126481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in insulin and insulin receptor genes may influence the interaction between the two molecules, as may anti-insulin antibodies (IAs), commonly found in patients with type 1 diabetes mellitus (T1D) or type 2 diabetes mellitus (T2D) treated with exogenous insulin. We examined the impact of two SNPs in the human insulin gene (INS), rs3842752 and rs689, and two in the insulin receptor gene (INSR) rs2245649 and rs2229429, on disease susceptibility, glycaemic control, and IAs formation in 100 T1D patients and 101 T2D patients treated with insulin. 79 individuals without diabetes were typed as healthy controls. The minor alleles of rs3842752 and rs689 in INS protected against T1D (OR: 0.50, p = 0.01 and OR: 0.44; p = 0.002, respectively). The minor alleles of both rs2245649 and rs2229429 in INSR were risk factors for poor glycaemic control (HbA1c ≥ 80 mmol/mol) in T1D (OR: 5.35, p = 0.009 and OR: 3.10, p = 0.01, respectively). Surprisingly, the minor alleles of rs2245649 and rs2229429 in INSR associated strongly with the absence of IAs in T1D (OR = 0.28, p = 0.008 and OR = 0.30, p = 0.002, respectively). In conclusion, the minor alleles of the investigated INS SNPs protect against T1D, and the minor alleles of the investigated INSR SNPs are associated with poor glycaemic control and the absence of IAs in T1D.
Collapse
Affiliation(s)
- Laura Massarenti
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark; (L.M.); (C.A.-N.); (C.E.)
| | - Christina Aniol-Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark; (L.M.); (C.A.-N.); (C.E.)
- Clinical Immunogenicity Analysis, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark; (L.M.); (C.A.-N.); (C.E.)
| | - Henrik Toft-Hansen
- Immunogenicity Assay Development, Novo Nordisk A/S, 2760 Måløv, Denmark;
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark; (L.M.); (C.A.-N.); (C.E.)
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
4
|
Singh V, Park YJ, Lee G, Unno T, Shin JH. Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit Rev Food Sci Nutr 2022; 63:9961-9976. [PMID: 35635755 DOI: 10.1080/10408398.2022.2076651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes (T2D) and T2D-associated comorbidities, such as obesity, are serious universally prevalent health issues among post-menopausal women. Menopause is an unavoidable condition characterized by the depletion of estrogen, a gonadotropic hormone responsible for secondary sexual characteristics in women. In addition to sexual dimorphism, estrogen also participates in glucose-lipid homeostasis, and estrogen depletion is associated with insulin resistance in the female body. Estrogen level in the gut also regulates the microbiota composition, and even conjugated estrogen is actively metabolized by the estrobolome to maintain insulin levels. Moreover, post-menopausal gut microbiota is different from the pre-menopausal gut microbiota, as it is less diverse and lacks the mucolytic Akkermansia and short-chain fatty acid (SCFA) producers such as Faecalibacterium and Roseburia. Through various metabolites (SCFAs, secondary bile acid, and serotonin), the gut microbiota plays a significant role in regulating glucose homeostasis, oxidative stress, and T2D-associated pro-inflammatory cytokines (IL-1, IL-6). While gut dysbiosis is common among post-menopausal women, dietary interventions such as probiotics, prebiotics, and synbiotics can ease post-menopausal gut dysbiosis. The objective of this review is to understand the relationship between post-menopausal gut dysbiosis and T2D-associated factors. Additionally, the study also provided dietary recommendations to avoid T2D progression among post-menopausal women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Tatsuya Unno
- Department of Biotechnology, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
5
|
Association of Polymorphisms within HOX Transcript Antisense RNA (HOTAIR) with Type 2 Diabetes Mellitus and Laboratory Characteristics: A Preliminary Case-Control Study. DISEASE MARKERS 2022; 2022:4327342. [PMID: 35359879 PMCID: PMC8964191 DOI: 10.1155/2022/4327342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex heterogeneous disease resulting from the environment and genetic interactions. Lately, genetic association studies have shown that polymorphisms in long noncoding RNAs (lncRNAs) are associated with T2DM susceptibility. This preliminary study is aimed at investigating if HOX transcript antisense RNA (HOTAIR) polymorphisms contribute to T2DM development. Five hundred clinically diagnosed T2DM cases and 500 healthy controls were recruited from the southeast Iranian population. Genomic DNA was isolated from nucleated blood cells and genotyped for MspI (C/T) (rs920778) and AluI (A/G) (rs4759314) polymorphisms using the PCR-RFLP technique. For genotyping rs12826786 C/T and rs1899663 G/T variants, ARMS-PCR method was applied. Our findings indicated that HOTAIR rs920778 C/T, rs12826786 C/T, and rs4759314 A/G polymorphisms have a significant positive association with T2DM, while a negative association was observed between rs1899663 G/T T2DM susceptibility. Significant associations were also observed between rs920778 C/T and HDL-C as well as s4759314 A/G and both FBS and LDL-C in T2DM patients. Haplotype analysis indicated that the CGCG, CTTG, TGTA, and TTTG haplotypes of rs920778/rs1899663/rs12826786/rs4759314 significantly enhanced T2DM risk by 1.47, 1.96, 2.81, and 4.80 folds, respectively. No strong linkage disequilibrium was found between the four HOTAIR SNPs. We firstly reported that HOTAIR rs1899663 G/T, rs12826786 C/T, rs4759314 A/G, and rs920778 C/T polymorphisms might influence T2DM susceptibility by modulating different signaling pathways and could be regarded as potential prognostic markers in T2DM patients.
Collapse
|
6
|
Duan YH, Liu AX, Su HX, Lv JH, Gong XY, Wang L. Effectiveness of acupuncture combined mecobalamin in the treatment of elderly diabetic peripheral neuropathy: A protocol of systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20366. [PMID: 32501981 PMCID: PMC7306285 DOI: 10.1097/md.0000000000020366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Although previous studies have reported the effectiveness of acupuncture combined mecobalamin (AM) in the treatment of elderly diabetic peripheral neuropathy (EDPN), no systematic study has assessed its effectiveness and safety. Thus, this study will evaluate the effectiveness and safety of AM for the treatment of patients with EDPN. METHODS Bibliographic electronic databases will be searched as follows: Cochrane Library, PUBMED, EMBASE, CINAHL, PsycINFO, WANGFANG, and China National Knowledge Infrastructure. All of them will be searched from each database initial to March 1, 2020 without language restrictions. All study selection, information extracted, and study quality evaluation will be performed by 2 independent authors. Any disagreements between 2 authors will be resolved by a third author via discussion. RevMan 5.3 software will be used for data pooling and meta-analysis performance if it is possible. RESULTS This study will provide synthesis of current evidence of AM for patients with EDPN through primary outcome of glycemic profile, and secondary of neuropathic pain intensity, plantar tactile sensitivity, sensory nerve conduction velocity and motor nerve conduction velocity, health-related quality of life, and adverse events. CONCLUSION This study will provide helpful reference for the efficacy and safety of AM for the treatment of patients with EDPN to the clinicians and further studies.Study registration number: INPLASY202040094.
Collapse
|
7
|
Yan S, Li M, Ma X, Jiang S, Sun M, Wang C, Pan Y, Sun C, Yao Y, Jin L, Li B. Association of multiple mineral and vitamin B group intake with blood glucose using quantile regression analysis: NHANES 2007-2014. Food Nutr Res 2019; 63:3560. [PMID: 31983911 PMCID: PMC6958618 DOI: 10.29219/fnr.v63.3560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/20/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Background Hyperglycaemia and diabetes have become major public health problems worldwide. There is increasing evidence that minerals and the vitamin B group might play specific roles in hyperglycaemia and the pathogenesis and progression of diabetes or metabolic complications. Objectives The main aim of this study is to investigate the effect of mineral and vitamin B group supplementation on the blood glucose levels of different populations. Design This was a cross-sectional study. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2014 were used in this study. A total of 8,322 participants (4,169 men and 4,153 women) were included in the study. Quantile regression (QR) was performed to identify the influence of mineral and vitamin B group intake on the level of fasting plasma glucose (FPG) in individuals in different quantiles of FPG. Results After adjusting for age, income, education, race, smoking, and alcohol consumption, FPG had a negative association with folic acid in individuals with normal or high FPG, with calcium in individuals with normal FPG, and with magnesium in males. FPG was negatively associated with folic acid and calcium in individuals with normal FPG, and magnesium in most of the quantiles for females. Discussion Hyperglycaemia and diabetes are currently becoming popular research topics. However, little is known about how the whole continuum of blood glucose is associated with commonly researched nutrient supplementation in terms of hyperglycaemia and diabetes. Conclusions The intake of calcium, folic acid and magnesium was negatively associated with blood glucose levels in individuals in different quantiles of FPG. Appropriate prevention and treatment strategies should be developed for people with different blood glucose levels.
Collapse
Affiliation(s)
- Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Meng Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Xiaoyu Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Shan Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Changcong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Yingan Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Chong Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Yan Yao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Lina Jin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| |
Collapse
|
8
|
Health Benefits of Endurance Training: Implications of the Brain-Derived Neurotrophic Factor-A Systematic Review. Neural Plast 2019; 2019:5413067. [PMID: 31341469 PMCID: PMC6613032 DOI: 10.1155/2019/5413067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/24/2019] [Indexed: 02/06/2023] Open
Abstract
This article presents a concept that wide expression of brain-derived neurotrophic factor (BDNF) and its receptors (TrkB) in the nervous tissue, evoked by regular endurance training (ET), can cause numerous motor and metabolic adaptations, which are beneficial for human health. The relationships between the training-evoked increase of endogenous BDNF and molecular and/or physiological adaptations in the nervous structures controlling both motor performance and homeostasis of the whole organism have been presented. Due to a very wide range of plastic changes that ET has exerted on various systems of the body, the improvement of motor skills and counteraction of the development of civilization diseases resulting from the posttraining increase of BDNF/TrkB levels have been discussed, as important for people, who undertake ET. Thus, this report presents the influence of endurance exercises on the (1) transformation of motoneuron properties, which are a final element of the motor pathways, (2) reduction of motor deficits evoked by Parkinson disease, and (3) prevention of the metabolic syndrome (MetS). This review suggests that the increase of posttraining levels of BDNF and its TrkB receptors causes simultaneous changes in the activity of the spinal cord, the substantia nigra, and the hypothalamic nuclei neurons, which are responsible for the alteration of the functional properties of motoneurons innervating the skeletal muscles, for the enhancement of dopamine release in the brain, and for the modulation of hormone levels involved in regulating the metabolic processes, responsively. Finally, training-evoked increase of the BDNF/TrkB leads to a change in a manner of regulation of skeletal muscles, causes a reduction of motor deficits observed in the Parkinson disease, and lowers weight, glucose level, and blood pressure, which accompany the MetS. Therefore, BDNF seems to be the molecular factor of pleiotropic activity, important in the modulation processes, underlying adaptations, which result from ET.
Collapse
|
9
|
Irgam K, Reddy BM, Annamaneni S, Rayabarapu P. The genetic susceptibility profile of the South Indian women with polycystic ovary syndrome and the universality of the lack of association of type 2 diabetes genes. Gene 2019; 701:113-120. [PMID: 30910557 DOI: 10.1016/j.gene.2019.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Kumuda Irgam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Battini Mohan Reddy
- Department of Genetics, Osmania University, Hyderabad, India; Molecular Anthropology Group, Indian Statistical Institute, Hyderabad, India.
| | | | | |
Collapse
|
10
|
Overview of genomics and post-genomics research on type 2 diabetes mellitus: Future perspectives and a framework for further studies. J Biosci 2019. [DOI: 10.1007/s12038-018-9818-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Gravand A, Foroughmand AM, Boroujeni MP. A study on the association of TCF7L2 rs11196205 (C/G) and CAPN10 rs3792267 (G/A) polymorphisms with type 2 diabetes mellitus in the South Western of Iran. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
12
|
Prabodha LBL, Sirisena ND, Dissanayake VHW. Susceptible and Prognostic Genetic Factors Associated with Diabetic Peripheral Neuropathy: A Comprehensive Literature Review. Int J Endocrinol 2018; 2018:8641942. [PMID: 29736170 PMCID: PMC5875044 DOI: 10.1155/2018/8641942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a disorder of glucose metabolism. It is a complex process involving the regulation of insulin secretion, insulin sensitivity, gluconeogenesis, and glucose uptake at the cellular level. Diabetic peripheral neuropathy (DPN) is one of the debilitating complications that is present in approximately 50% of diabetic patients. It is the primary cause of diabetes-related hospital admissions and nontraumatic foot amputations. The pathogenesis of diabetic neuropathy is a complex process that involves hyperglycemia-induced oxidative stress and altered polyol metabolism that changes the nerve microvasculature, altered growth factor support, and deregulated lipid metabolism. Recent literature has reported that there are several heterogeneous groups of susceptible genetic loci which clearly contribute to the development of DPN. Several studies have reported that some patients with prediabetes develop neuropathic complications, whereas others demonstrated little evidence of neuropathy even after long-standing diabetes. There is emerging evidence that genetic factors may contribute to the development of DPN. This paper aims to provide an up-to-date review of the susceptible and prognostic genetic factors associated with DPN. An extensive survey of the scientific literature published in PubMed using the search terms "Diabetic peripheral neuropathy/genetics" and "genome-wide association study" was carried out, and the most recent and relevant literature were included in this review.
Collapse
Affiliation(s)
- L. B. L. Prabodha
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - N. D. Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - V. H. W. Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
13
|
Norouzi S, Adulcikas J, Sohal SS, Myers S. Zinc transporters and insulin resistance: therapeutic implications for type 2 diabetes and metabolic disease. J Biomed Sci 2017; 24:87. [PMID: 29157234 PMCID: PMC5694903 DOI: 10.1186/s12929-017-0394-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Zinc is a metal ion that is essential for growth and development, immunity, and metabolism, and therefore vital for life. Recent studies have highlighted zinc's dynamic role as an insulin mimetic and a cellular second messenger that controls many processes associated with insulin signaling and other downstream pathways that are amendable to glycemic control. MAIN BODY Mechanisms that contribute to the decompartmentalization of zinc and dysfunctional zinc transporter mechanisms, including zinc signaling are associated with metabolic disease, including type 2 diabetes. The actions of the proteins involved in the uptake, storage, compartmentalization and distribution of zinc in cells is under intense investigation. Of these, emerging research has highlighted a role for several zinc transporters in the initiation of zinc signaling events in cells that lead to metabolic processes associated with maintaining insulin sensitivity and thus glycemic homeostasis. CONCLUSION This raises the possibility that zinc transporters could provide novel utility to be targeted experimentally and in a clinical setting to treat patients with insulin resistance and thus introduce a new class of drug target with utility for diabetes pharmacotherapy.
Collapse
Affiliation(s)
- Shaghayegh Norouzi
- Faculty of Health, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, TAS, 7250, Australia
| | - John Adulcikas
- Faculty of Health, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, TAS, 7250, Australia
| | - Sukhwinder Singh Sohal
- Faculty of Health, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, TAS, 7250, Australia
| | - Stephen Myers
- Faculty of Health, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, TAS, 7250, Australia.
| |
Collapse
|
14
|
Xue Y, Gao M, Gao Y. Childhood type 2 diabetes: Risks and complications. Exp Ther Med 2016; 12:2367-2370. [PMID: 27703500 PMCID: PMC5038872 DOI: 10.3892/etm.2016.3654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
The universal endocrine pathological state affecting young individuals and adults is type 2 diabetes mellitus, which has seen a significant increase in the last 30 years, particularly in children. Genetic and evnironmental factors are the causative agents for this pathological state in children. This rapid and wide spread of the disease can be controlled by enforcing amendments in environmental factors such as diet, physical activities and obesity. In young infants breastfeeding may be a key modulator of the disease. Associated disorders co-observed in the patients of type 2 diabetes mellitus include renal failure, heart problems and circulatory dysfunctionalities, such as cardiac failure and vision disability. These associated disorders become more pronounced in young patients when they reach puberty. To overcome the lethal outcomes of the disease, early screening of the disease is crucial. The present review focused on the latest updates in the field, as well as plausible risks and complications of this pathological state.
Collapse
Affiliation(s)
- Ying Xue
- Department of Endocrinology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Min Gao
- Department of Endocrinology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Yiqing Gao
- Department of Endocrinology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
15
|
Luna GI, da Silva ICR, Sanchez MN. Association between -308G/A TNFA Polymorphism and Susceptibility to Type 2 Diabetes Mellitus: A Systematic Review. J Diabetes Res 2016; 2016:6309484. [PMID: 27822481 PMCID: PMC5086378 DOI: 10.1155/2016/6309484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/12/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus (DM) is considered to be a worldwide epidemic disease and its type 2 form comprises more than 95% of all cases. Tumor necrosis factor-alpha (TNF-α) is a proinflammatory cytokine. Its dysregulation has been implicated in a variety of human diseases, including type 2 diabetes mellitus (T2DM). The control of expression of this cytokine is associated with insulin resistance and has a strong genetic influence. In order to understand this relationship, the literature from all case-control studies since 2000 to date was reviewed. The genotypes frequency results presented in ten publications with different ethnicities were compared. The correlation between the TNFA promoter genotypes and the risk of developing T2DM remains controversial due to the many discrepancies between the different studies available. Ethnic differences may play a role in these conflicting results, since the distribution of TNFA promoter polymorphisms is distinctive between individuals of dissimilar racial origin. Hence, although the relationship between T2DM incidence and presence of polymorphisms at position -308 of the TNFA gene is not entirely clear, the results of these studies suggest the need for further investigation.
Collapse
Affiliation(s)
- Geisa Izetti Luna
- Programa de Pós-Graduação em Saúde Coletiva, Universidade de Brasília, Brasília, DF, Brazil
- *Geisa Izetti Luna:
| | | | - Mauro Niskier Sanchez
- Programa de Pós-Graduação em Saúde Coletiva, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
16
|
Karachanak-Yankova S, Dimova R, Nikolova D, Nesheva D, Koprinarova M, Maslyankov S, Tafradjiska R, Gateva P, Velizarova M, Hammoudeh Z, Stoynev N, Toncheva D, Tankova T, Dimova I. Epigenetic alterations in patients with type 2 diabetes mellitus. Balkan J Med Genet 2015; 18:15-24. [PMID: 27785392 PMCID: PMC5026264 DOI: 10.1515/bjmg-2015-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic changes, in particular DNA methylation processes, play a role in the pathogenesis and progression of type 2 diabetes mellitus (T2DM) linking genetic and environmental factors. To clarify this role, we have analyzed in patients with different duration of T2DM: (i) expression levels of methyl-CpG-binding domain protein 2 (MBD2) as marker of DNA methylation, and ii) methylation changes in 22 genes connected to cellular stress and toxicity. We have analyzed MBD2 mRNA expression levels in16 patients and 12 controls and the methylation status of stress and toxicity genes in four DNA pools: (i) controls; (ii) newly-diagnosed T2DM patients; (iii) patients with T2DM duration of <5 years and (iv) of >5 years. The MBD2 expression levels were 10.4-times increased on average in T2DM patients compared to controls. Consistent increase in DNA methylation fraction with the increase in T2DM duration was observed in Prdx2 and SCARA3 genes, connected to oxidative stress protection and in BRCA1 and Tp53 tumor-suppressor genes. In conclusion, increased MBD2 expression in patients indicated general dysregulation of DNA methylation in T2DM. The elevated methylation of Prdx2 and SCARA3 genes suggests disturbance in oxidative stress protection in T2DM. The increased methylation of BRCA1 and Tp53 genes unraveled an epigenetic cause for T2DM related increase in cancer risk.
Collapse
Affiliation(s)
- S Karachanak-Yankova
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - R Dimova
- University Specialized Hospital for Active Treatment of Endocrinology ‘Acad. Ivan Penchev,’ Sofia, Bulgaria
| | - D Nikolova
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - D Nesheva
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - M Koprinarova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S Maslyankov
- Department of Surgery, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - R Tafradjiska
- Department of Pathophysiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - P Gateva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - M Velizarova
- Clinical Laboratory, University Hospital ‘Aleksandrovska,’Sofia, Bulgaria
| | - Z Hammoudeh
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - N Stoynev
- University Specialized Hospital for Active Treatment of Endocrinology ‘Acad. Ivan Penchev,’ Sofia, Bulgaria
| | - D Toncheva
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - T Tankova
- University Specialized Hospital for Active Treatment of Endocrinology ‘Acad. Ivan Penchev,’ Sofia, Bulgaria
| | - I Dimova
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
17
|
Uma Jyothi K, Reddy BM. Gene-gene and gene-environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad, India. Meta Gene 2015; 5:9-20. [PMID: 26042206 PMCID: PMC4443428 DOI: 10.1016/j.mgene.2015.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/17/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Fifteen SNPs from nine different genes were genotyped on 1379 individuals, 758 T2DM patients and 621 controls, from the city of Hyderabad, India, using Sequenom Massarray platform. These data were analyzed to examine the role of gene-gene and gene-environment interactions in the manifestation of T2DM. The multivariate analysis suggests that TCF7L2, CDKAL1, IGF2BP2, HHEX and PPARG genes are significantly associated with T2DM, albeit only the first two of the above 5 were associated in the univariate analysis. Significant gene-gene and gene-environment interactions were also observed with reference to TCF7L2, CAPN10 and CDKAL1 genes, highlighting their importance in the pathophysiology of T2DM. In the analysis for cumulative effect of risk alleles, SLC30A8 steps in as significant contributor to the disease by its presence in all combinations of risk alleles. A striking difference between risk allele categories, 1-4 and 5-6, was evident in showing protective and susceptible roles, respectively, while the latter was characterized by the presence of TCF7L2 and CDKAL1 variants. Overall, these two genes TCF7L2 and CDKAL1 showed strong association with T2DM, either individually or in interaction with the other genes. However, we need further studies on gene-gene and gene-environment interactions among heterogeneous Indian populations to obtain unequivocal conclusions that are applicable for the Indian population as a whole.
Collapse
Affiliation(s)
- Kommoju Uma Jyothi
- Biological Anthropology Unit (Molecular Anthropology Group), Indian Statistical Institute, Hyderabad, India
| | - Battini Mohan Reddy
- Biological Anthropology Unit (Molecular Anthropology Group), Indian Statistical Institute, Hyderabad, India
| |
Collapse
|
18
|
Myers SA. Zinc transporters and zinc signaling: new insights into their role in type 2 diabetes. Int J Endocrinol 2015; 2015:167503. [PMID: 25983752 PMCID: PMC4423030 DOI: 10.1155/2015/167503] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element that plays a vital role in many biological processes including growth and development, immunity, and metabolism. Recent studies have highlighted zinc's dynamic role as a "cellular second messenger" in the control of insulin signaling and glucose homeostasis. Accordingly, mechanisms that contribute to dysfunctional zinc signaling are suggested to be associated with metabolic disease states including cancer, cardiovascular disease, Alzheimer's disease, and diabetes. The actions of the proteins that control the uptake, storage, and distribution of zinc, the zinc transporters, are under intense investigation due to their emerging role in type 2 diabetes. The synthesis, secretion, and action of insulin are dependent on zinc and the transporters that make this ion available to cellular processes. This suggests that zinc plays a previously unidentified role where changes in zinc status over time may affect insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.
Collapse
Affiliation(s)
- Stephen A. Myers
- University of Tasmania (UTAS), School of Health Sciences, Newnham Campus, Launceston, TAS 7250, Australia
- *Stephen A. Myers:
| |
Collapse
|
19
|
Myers SA, Nield A, Myers M. Zinc transporters, mechanisms of action and therapeutic utility: implications for type 2 diabetes mellitus. J Nutr Metab 2012; 2012:173712. [PMID: 23304467 PMCID: PMC3530793 DOI: 10.1155/2012/173712] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 12/29/2022] Open
Abstract
Zinc is an essential trace element that plays a vital role in maintaining many biological processes and cellular homeostasis. Dysfunctional zinc signaling is associated with a number of chronic disease states including cancer, cardiovascular disease, Alzheimer's disease, and diabetes. Cellular homeostasis requires mechanisms that tightly control the uptake, storage, and distribution of zinc. This is achieved through the coordinated actions of zinc transporters and metallothioneins. Evidence on the role of these proteins in type 2 diabetes mellitus (T2DM) is now emerging. Zinc plays a key role in the synthesis, secretion and action of insulin in both physiological and pathophysiological states. Moreover, recent studies highlight zinc's dynamic role as a "cellular second messenger" in the control of insulin signaling and glucose homeostasis. This suggests that zinc plays an unidentified role as a novel second messenger that augments insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.
Collapse
Affiliation(s)
- Stephen A. Myers
- School of Health Sciences, University of Ballarat, University Drive, Mount Helen, VIC 3350, Australia
- Collaborative Research Network, University of Ballarat, Mount Helen, VIC 3350, Australia
| | - Alex Nield
- School of Health Sciences, University of Ballarat, University Drive, Mount Helen, VIC 3350, Australia
| | - Mark Myers
- School of Health Sciences, University of Ballarat, University Drive, Mount Helen, VIC 3350, Australia
| |
Collapse
|