1
|
Surak A, Altit G, Singh Y. Targeted Neonatal Echocardiography: Basics of Knobology 101. Am J Perinatol 2024; 41:2193-2197. [PMID: 38503304 DOI: 10.1055/s-0044-1782652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Targeted neonatal echocardiography (TNE) is essential when approaching hemodynamic instability in neonates. Competency in this field requires standardized training, including robust hands-on experience. Proficiency in understanding the key elements of ultrasound knobology is indispensable for optimal acquisition of imaging. This is a narrative review summarizing the key elements of knobology in TNE. Literature review was mainly done through PubMed. There was no funding allocated for the production of this manuscript. KEY POINTS: · Robust and structured training is essential. · Understanding knobology is required to achieve competency in TNE. · Optimizing knobology is critical for an accurate hemodynamic interpretation report.
Collapse
Affiliation(s)
- Aimann Surak
- Department of Pediatrics, Philip Charles Etches Neonatal Intensive Care Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Gabriel Altit
- Division of Neonatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Yogen Singh
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
2
|
Adler RS. What is the place of ultrasound in MSK imaging? Skeletal Radiol 2024; 53:1699-1709. [PMID: 38492028 DOI: 10.1007/s00256-024-04642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
During the past four decades, ultrasound has become popular as an imaging modality applied to the musculoskeletal (MSK) system, particularly outside the USA, due to its low cost, accessibility, and lack of ionizing radiation. A basic requirement in performing these examinations is to have a core group of radiologists and ultrasound technologists with expertise in MSK ultrasound. The extent to which ultrasound will be part of the imaging offered by a particular radiology practice or in an academic institution will vary according to expertise, availability, and reimbursements. A brief discussion of the technical capabilities of the current generation of ultrasound scanners will be followed by a description of some of the more prevalent MSK ultrasound imaging applications. The extent to which training to perform these exams within and outside of Radiology plays a role is discussed. Applications that are unique to ultrasound, such as dynamic evaluation of musculoskeletal anatomy and some, US-guided interventions are an important part of MSK imaging. Ultrasound is increasingly important in the assessment of superficial structures, such as tendons, small joints, and peripheral nerves. These applications help to establish the place of ultrasound as an important part of the Radiologists approach to MSK imaging. Outside of radiology, for a variety of clinical subspecialties, ultrasound already plays an integral role in MSK imaging.
Collapse
Affiliation(s)
- Ronald S Adler
- Department of Radiology NYU Grossman School of Medicine, 333 East 38Th Street, 6-209, New York, NY, USA.
| |
Collapse
|
3
|
Asif S, Zhao M, Chen X, Zhu Y. StoneNet: An Efficient Lightweight Model Based on Depthwise Separable Convolutions for Kidney Stone Detection from CT Images. Interdiscip Sci 2023; 15:633-652. [PMID: 37452930 DOI: 10.1007/s12539-023-00578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Kidney stone disease is one of the most common and serious health problems in much of the world, leading to many hospitalizations with severe pain. Detecting small stones is difficult and time-consuming, so an early diagnosis of kidney disease is needed to prevent the loss of kidney failure. Recent advances in artificial intelligence (AI) found to be very successful in the diagnosis of various diseases in the biomedical field. However, existing models using deep networks have several problems, such as high computational cost, long training time, and huge parameters. Providing a low-cost solution for diagnosing kidney stones in a medical decision support system is of paramount importance. Therefore, in this study, we propose "StoneNet", a lightweight and high-performance model for the detection of kidney stones based on MobileNet using depthwise separable convolution. The proposed model includes a combination of global average pooling (GAP), batch normalization, dropout layer, and dense layers. Our study shows that using GAP instead of flattening layers greatly improves the robustness of the model by significantly reducing the parameters. The developed model is benchmarked against four pre-trained models as well as the state-of-the-art heavy model. The results show that the proposed model can achieve the highest accuracy of 97.98%, and only requires training and testing time of 996.88 s and 14.62 s. Several parameters, such as different batch sizes and optimizers, were considered to validate the proposed model. The proposed model is computationally faster and provides optimal performance than other considered models. Experiments on a large kidney dataset of 1799 CT images show that StoneNet has superior performance in terms of higher accuracy and lower complexity. The proposed model can assist the radiologist in faster diagnosis of kidney stones and has great potential for deployment in real-time applications.
Collapse
Affiliation(s)
- Sohaib Asif
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Ming Zhao
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Xuehan Chen
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Yusen Zhu
- School of Mathematics, Hunan University, Changsha, China
| |
Collapse
|
4
|
Adler RS. Musculoskeletal ultrasound: a technical and historical perspective. J Ultrason 2023; 23:e172-e187. [PMID: 38020513 PMCID: PMC10668930 DOI: 10.15557/jou.2023.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
During the past four decades, musculoskeletal ultrasound has become popular as an imaging modality due to its low cost, accessibility, and lack of ionizing radiation. The development of ultrasound technology was possible in large part due to concomitant advances in both solid-state electronics and signal processing. The invention of the transistor and digital computer in the late 1940s was integral in its development. Moore's prediction that the number of microprocessors on a chip would grow exponentially, resulting in progressive miniaturization in chip design and therefore increased computational power, added to these capabilities. The development of musculoskeletal ultrasound has paralleled technical advances in diagnostic ultrasound. The appearance of a large variety of transducer capabilities and rapid image processing along with the ability to assess vascularity and tissue properties has expanded and continues to expand the role of musculoskeletal ultrasound. It should also be noted that these developments have in large part been due to a number of individuals who had the insight to see the potential applications of this developing technology to a host of relevant clinical musculoskeletal problems. Exquisite high-resolution images of both deep and small superficial musculoskeletal anatomy, assessment of vascularity on a capillary level and tissue mechanical properties can be obtained. Ultrasound has also been recognized as the method of choice to perform a large variety of interventional procedures. A brief review of these technical developments, the timeline over which these improvements occurred, and the impact on musculoskeletal ultrasound is presented below.
Collapse
Affiliation(s)
- Ronald Steven Adler
- Department of Radiology, New York University, Grossman School of Medicine, Langone Orthopedic Center, New York, USA
| |
Collapse
|
5
|
Jin Y, Spiller NP, He C, Faulkner G, Booth MJ, Elston SJ, Morris SM. Zwitterion-doped liquid crystal speckle reducers for immersive displays and vectorial imaging. LIGHT, SCIENCE & APPLICATIONS 2023; 12:242. [PMID: 37735157 PMCID: PMC10514055 DOI: 10.1038/s41377-023-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Lasers possess many attractive features (e.g., high brightness, narrow linewidth, well-defined polarization) that make them the ideal illumination source for many different scientific and technological endeavors relating to imaging and the display of high-resolution information. However, their high-level of coherence can result in the formation of noise, referred to as speckle, that can corrupt and degrade images. Here, we demonstrate a new electro-optic technology for combatting laser speckle using a chiral nematic liquid crystal (LC) dispersed with zwitterionic dopants. Results are presented that demonstrate when driven at the optimum electric field conditions, the speckle noise can be reduced by >90% resulting in speckle contrast (C) values of C = 0.07, which is approaching that required to be imperceptible to the human eye. This LC technology is then showcased in an array of different display and imaging applications, including a demonstration of speckle reduction in modern vectorial laser-based imaging.
Collapse
Affiliation(s)
- Yihan Jin
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Nathan P Spiller
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Grahame Faulkner
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Steve J Elston
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Stephen M Morris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
6
|
Lee H, Lee MH, Youn S, Lee K, Lew HM, Hwang JY. Speckle Reduction via Deep Content-Aware Image Prior for Precise Breast Tumor Segmentation in an Ultrasound Image. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2638-2650. [PMID: 35877808 DOI: 10.1109/tuffc.2022.3193640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The performance of computer-aided diagnosis (CAD) systems that are based on ultrasound imaging has been enhanced owing to the advancement in deep learning. However, because of the inherent speckle noise in ultrasound images, the ambiguous boundaries of lesions deteriorate and are difficult to distinguish, resulting in the performance degradation of CAD. Although several methods have been proposed to reduce speckle noise over decades, this task remains a challenge that must be improved to enhance the performance of CAD. In this article, we propose a deep content-aware image prior (DCAIP) with a content-aware attention module (CAAM) for superior despeckling of ultrasound images without clean images. For the image prior, we developed a CAAM to deal with the content information in an input image. In this module, super-pixel pooling (SPP) is used to give attention to salient regions in an ultrasound image. Therefore, it can provide more content information regarding the input image when compared to other attention modules. The DCAIP consists of deep learning networks based on this attention module. The DCAIP is validated by applying it as a preprocessing step for breast tumor segmentation in ultrasound images, which is one of the tasks in CAD. Our method improved the segmentation performance by 15.89% in terms of the area under the precision-recall (PR) curve (AUPRC). The results demonstrate that our method enhances the quality of ultrasound images by effectively reducing speckle noise while preserving important information in the image, promising for the design of superior CAD systems.
Collapse
|
7
|
Choi BE, Lee HS, Sung JH, Jeong EY, Park CY, Jeong JS. Polarization Inverted Ultrasound Transducer Based on Composite Structure for Tissue Harmonic and Frequency Compound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:273-282. [PMID: 34464259 DOI: 10.1109/tuffc.2021.3109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrasound transducer with polarization inversion technique (PIT) can provide dual-frequency feature for tissue harmonic imaging (THI) and frequency compound imaging (FCI). However, in the conventional PIT, the ultrasound intensity is reduced due to the multiple resonance characteristics of the combined piezoelectric element, and it is challenging to handle the thin piezoelectric layer required to make a PIT-based acoustic stack. In this study, an improved PIT using a piezo-composite layer was proposed to compensate for those problems simultaneously. The novel PIT-based acoustic stack also consists of two piezoelectric layers with opposite poling directions, in which the piezo-composite layer is located on the front side and the bulk-type piezoelectric layer is located on the back side. The thickness ratio between two piezoelectric layers is 0.5:0.5, but unlike a typical PIT model, it can generate dual-frequency spectrum. A finite element analysis (FEA) simulation was conducted, and subsequently, the prototype transducer was fabricated for performance demonstration. In the simulation and experiment, the intensity was increased by 56.76% and 30.88% compared to the conventional PIT model with the thickness ratio of 0.3:0.7. Thus, the proposed PIT-based transducer is expected to be useful in implementation of THI and FCI.
Collapse
|
8
|
Naik VN, Gamad RS, Bansod PP. Effect of Despeckling Filters on the Segmentation of Ultrasound Common Carotid Artery Images. Biomed J 2021; 45:686-695. [PMID: 34273550 PMCID: PMC9486865 DOI: 10.1016/j.bj.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Background Carotid intima-media thickness (IMT) measured in B-mode ultrasound image is an important indicator of Atherosclerosis disease. Speckle noise inherently present in ultrasounds’ thereby degrades the visual evaluation and limits the automated segmentation performance. The objective of this study is to investigate the effects of three despeckle filters on the segmentation of carotid IMT in ultrasound image. Methods Automated segmentation of IMT is achieved by utilizing fast fuzzy c-mean clustering and distance-regularized level set without re-initialization techniques. Manual segmentation has been done by an experienced radiologist. The performances of median, hybrid median and improved adaptive complex diffusion (IACDF) filters are examined and a quantitative and qualitative comparison among these filters has been reported on 151 DICOM images. Bland–Altman plots were used to compare IMT results of these filters. Furthermore, performances of above three filters are evaluated under different noise levels by individually adding speckle and salt and pepper noise in ten randomly selected images from 151 DICOM dataset. Plots between noise and quality evaluation metric parameters are used to compare de-noising performance of these filters. Results The average processing time per image of proposed IMT measurement technique without-filter and with filter is approx 15.39 s max. Conclusion It is shown that the median filter (window 5 × 5) measures better than hybrid median and IACDF filters. Finally, concluded that de-noising of ultrasound image before segmentation procedure certainly improves segmentation accuracy. Furthermore, it is observed that these filters do not impose serious computational burden and entail moderate processing time.
Collapse
Affiliation(s)
- Vaishali Narendra Naik
- Electronics and Communication Engineering, Shri Govindram Sakseria Institute of Technology and Science, (M.P), India.
| | - R S Gamad
- Electronics and Instrumentation Engineering, Shri Govindram Sakseria Institute of Technology and Science, 23 Park Road, Indore, 452003, (M.P), India.
| | - P P Bansod
- Electronics and Instrumentation Engineering, Shri Govindram Sakseria Institute of Technology and Science, 23 Park Road, Indore, 452003, (M.P), India.
| |
Collapse
|
9
|
Sudharson S, Pratap T, Kokil P. Noise level estimation for effective blind despeckling of medical ultrasound images. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Ge GR, Rolland JP, Parker KJ. Speckle statistics of biological tissues in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:4179-4191. [PMID: 34457407 PMCID: PMC8367221 DOI: 10.1364/boe.422765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The speckle statistics of optical coherence tomography images of biological tissue have been studied using several historical probability density functions. Here, we propose a new theoretical framework based on power-law functions, where we hypothesize that an underlying power-law distribution governs scattering from tissues. Thus, multi-scale scattering sites including the fractal branching vasculature will contribute to power-law probability distributions of speckle statistics. Specifically, these are the Burr type XII distribution for speckle amplitude, the Lomax distribution for intensity, and the generalized logistic distribution for log amplitude. Experimentally, these three distributions are fitted to histogram data from nine optical coherence tomography scans of various samples and biological tissues, in vivo and ex vivo. The distributions are also compared with classical models such as the Rayleigh, K, and gamma distributions. The results indicate that across OCT datasets of various tissue types, the proposed power-law distributions are more appropriate models yielding novel parameters for characterizing the physics of scattering from biological tissue. Thus, the overall framework brings to the field new biomarkers from OCT measures of speckle in tissues, grounded in basic biophysics and with wide applications to diagnostic imaging in clinical use.
Collapse
Affiliation(s)
- Gary R. Ge
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, New York 14627, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, New York 14627, USA
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, New York 14627, USA
- Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, New York 14627, USA
| | - Kevin J. Parker
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, New York 14627, USA
- Department of Electrical and Computer Engineering, University of Rochester, 500 Computer Studies Building, Rochester, New York 14627, USA
| |
Collapse
|
11
|
Sudharson S, Kokil P. Computer-aided diagnosis system for the classification of multi-class kidney abnormalities in the noisy ultrasound images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 205:106071. [PMID: 33887632 DOI: 10.1016/j.cmpb.2021.106071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The primary causes of kidney failure are chronic and polycystic kidney diseases. Cyst, stone, and tumor development lead to chronic kidney diseases that commonly impair kidney functions. The kidney diseases are asymptomatic and do not show any significant symptoms at its initial stage. Therefore, diagnosing the kidney diseases at their earlier stage is required to prevent the loss of kidney function and kidney failure. METHODS This paper proposes a computer-aided diagnosis (CAD) system for detecting multi-class kidney abnormalities from ultrasound images. The presented CAD system uses a pre-trained ResNet-101 model for extracting the features and support vector machine (SVM) classifier for the classification purpose. Ultrasound images usually gets affected by speckle noise that degrades the image quality and performance of the CAD system. Hence, it is necessary to remove speckle noise from the ultrasound images. Therefore, a CAD based system is proposed with the despeckling module using a deep residual learning network (RLN) to reduce speckle noise. Pre-processing of ultrasound images using deep RLN helps to drastically improve the classification performance of the CAD system. The proposed CAD system achieved better prediction results when compared to the existing state-of-the-art methods. RESULTS To validate the proposed CAD system performance, the experiments have been carried out in the noisy kidney ultrasound images. The designed system framework achieved the maximum classification accuracy when compared to the existing approaches. The SVM classifier is selected for the CAD system based on performance comparison with various classifiers like K-nearest neighbour, tree, discriminant, Naive Bayes, and linear. CONCLUSIONS The proposed CAD system outperforms in classifying the noisy kidney ultrasound images precisely as compared to the existing state-of-the-art methods. Further, the CAD system is evaluated in terms of selectivity and sensitivity scores. The presented CAD system with the pre-processing module would serve as a real-time supporting tool for diagnosing multi-class kidney abnormalities from the ultrasound images.
Collapse
Affiliation(s)
- S Sudharson
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai-600127, India
| | - Priyanka Kokil
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai-600127, India.
| |
Collapse
|
12
|
Ho TS, Tsai MR, Lu CW, Chang HS, Huang SL. Mirau-type full-field optical coherence tomography with switchable partially spatially coherent illumination modes. BIOMEDICAL OPTICS EXPRESS 2021; 12:2670-2683. [PMID: 34123496 PMCID: PMC8176809 DOI: 10.1364/boe.422622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 05/12/2023]
Abstract
A crystalline-fiber-based Mirau-type full-field optical coherence tomography (FF-OCT) system utilizing two partially coherent illumination modes is presented. Using a diode-pumped Ti:sapphire crystalline fiber with a high numerical aperture, spatially-incoherent broadband emission can be generated with high radiance. With two modes of different spatial coherence settings, either deeper penetration depth or higher B-scan rate can be achieved. In a wide-field illumination mode, the system functions like FF-OCT with partially coherent illumination to improve the penetration depth. In a strip-field illumination mode, a compressed field is generated on the sample, and a low-speckle B-scan can be acquired by compounding pixel lines within.
Collapse
Affiliation(s)
- Tuan-Shu Ho
- Apollo Medical Optics, Ltd., Taipei 114, Taiwan
- Correspondence regarding OCT system design questions should be sent to
| | | | - Chih-Wei Lu
- Apollo Medical Optics, Ltd., Taipei 114, Taiwan
| | | | - Sheng-Lung Huang
- Apollo Medical Optics, Ltd., Taipei 114, Taiwan
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan
- Correspondence regarding light source questions should be sent to
| |
Collapse
|
13
|
Delgado S, Curiel L, Pichardo S. Steering single-element lead zirconate titanate ultrasound transducers using biaxial driving. ULTRASONICS 2021; 110:106241. [PMID: 32916381 DOI: 10.1016/j.ultras.2020.106241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Previous work has shown that biaxial driving using two phase-offset orthogonal electric fields (propagation and lateral) improves the efficiency of ferroelectric materials by reducing coercivity and, hence, energy dissipation. In the current investigation, we demonstrated the capability of the biaxial method to steer ultrasound waves in single-element piezoceramic transducers made of prismatic lead zirconate titanate (PZT). We conducted finite element analysis simulations for 133 kHz (model 1) and 470 kHz biaxial (model 2) transducers models. We performed experimental validation with biaxially driven single-element transducers (n = 3) operating at an average frequency of 131 kHz with the same characteristics as model 1. For both models, we found non-symmetric steering that was a function of both the phase and power of the second electric field. At a constant electrical power (1 W) on the propagation electrodes, simulations for the 133 kHz model predicted maximal steering of 10.3°, 22.6°, and 30.9° for lateral electrode powers of 0.1 W, 0.5 W, and 1.0 W, respectively. Experimentally, for model 1, the maximal steering was 11.7° ± 1.9°, 23.5° ± 3.5°, and 30.2° ± 4.4° for the lateral electrode powers of 0.1 W, 0.5 W, and 1.0 W, respectively. Simulations for the 470 kHz model predicted maximal steering of 8.8°, 16.1°, and 27° for lateral electrode powers of 0.1 W, 0.5 W, and 1.0 W, respectively. Simulations showed that the cause of the steering asymmetry was a non-uniform shear deformation associated with the slightly off-resonance lateral electric field driving frequency. This is the first demonstration of ultrasound steering using a single-element transducer, which can have important applications for ultrasound focusing with phased arrays.
Collapse
Affiliation(s)
- Sagid Delgado
- Department of Electrical and Computer Engineering, Lakehead University, Canada.
| | - Laura Curiel
- Department of Electrical and Computer Engineering, University of Calgary, Canada.
| | - Samuel Pichardo
- Departments of Radiology and Clinical Neurosciences, University of Calgary, Canada.
| |
Collapse
|
14
|
Afshari P, Zakian C, Ntziachristos V. Improving ultrasound images with elevational angular compounding based on acoustic refraction. Sci Rep 2020; 10:18173. [PMID: 33097780 PMCID: PMC7584590 DOI: 10.1038/s41598-020-75092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Ultrasound imaging is affected by coherent noise or speckle, which reduces contrast and overall image quality and degrades the diagnostic precision of the collected images. Elevational angular compounding (EAC) is an attractive means of addressing this limitation, since it reduces speckle noise while operating in real-time. However, current EAC implementations rely on mechanically rotating a one-dimensional (1D) transducer array or electronically beam steering of two-dimensional (2D) arrays to provide different elevational imaging angles, which increases the size and cost of the systems. Here we present a novel EAC implementation based on a 1D array, which does not necessitate mechanically rotating the transducer. The proposed refraction-based elevational angular compounding technique (REACT) instead utilizes a translating cylindrical acoustic lens that steers the ultrasound beam along the elevational direction. Applying REACT to investigate phantoms and excised tissue samples demonstrated superior suppression of ultrasound speckle noise compared to previous EAC methods, with up to a two-fold improvement in signal- and contrast-to-noise ratios. The effects of elevational angular width on speckle reduction was further investigated to determine the appropriate conditions for applying EAC. This study introduces acoustic refractive elements as potential low cost solutions to noise reduction, which could be integrated into current medical ultrasound devices.
Collapse
Affiliation(s)
- Parastoo Afshari
- Chair of Biological Imaging, Technical University of Munich, 81675, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Christian Zakian
- Chair of Biological Imaging, Technical University of Munich, 81675, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Technical University of Munich, 81675, Munich, Germany. .,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
15
|
Little CD, Colchester RJ, Noimark S, Manmathan G, Finlay MC, Desjardins AE, Rakhit RD. Optically Generated Ultrasound for Intracoronary Imaging. Front Cardiovasc Med 2020; 7:525530. [PMID: 33173786 PMCID: PMC7591717 DOI: 10.3389/fcvm.2020.525530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Conventional intravascular ultrasound (IVUS) devices use piezoelectric transducers to electrically generate and receive US. With this paradigm, there are numerous challenges that restrict improvements in image quality. First, with miniaturization of the transducers to reduce device size, it can be challenging to achieve the sensitivities and bandwidths required for large tissue penetration depths and high spatial resolution. Second, complexities associated with manufacturing miniaturized electronic transducers can have significant cost implications. Third, with increasing interest in molecular characterization of tissue in-vivo, it has been challenging to incorporate optical elements for multimodality imaging with photoacoustics (PA) or near-infrared spectroscopy (NIRS) whilst maintaining the lateral dimensions suitable for intracoronary imaging. Optical Ultrasound (OpUS) is a new paradigm for intracoronary imaging. US is generated at the surface of a fiber optic transducer via the photoacoustic effect. Pulsed or modulated light is absorbed in an engineered coating on the fiber surface and converted to thermal energy. The subsequent temperature rise leads to a pressure rise within the coating, which results in a propagating ultrasound wave. US reflections from imaged structures are received with optical interferometry. With OpUS, high bandwidths (31.5 MHz) and pressures (21.5 MPa) have enabled imaging with axial resolutions better than 50 μm and at depths >20 mm. These values challenge those of conventional 40 MHz IVUS technology and show great potential for future clinical application. Recently developed nanocomposite coating materials, that are highly transmissive at light wavelengths used for PA and NIRS light, can facilitate multimodality imaging, thereby enabling molecular characterization.
Collapse
Affiliation(s)
- Callum D. Little
- Department of Cardiovascular Medicine, Royal Free NHS Foundation Trust, London, United Kingdom
- Wellcome-Engineering & Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Richard J. Colchester
- Wellcome-Engineering & Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences, London, United Kingdom
- Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Sacha Noimark
- Wellcome-Engineering & Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences, London, United Kingdom
- Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Gavin Manmathan
- Department of Cardiovascular Medicine, Royal Free NHS Foundation Trust, London, United Kingdom
| | - Malcolm C. Finlay
- Wellcome-Engineering & Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences, London, United Kingdom
- Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
- William Harvey Cardiovascular Research Institute, Queen Mary University of London and Barts Health Centre London, London, United Kingdom
| | - Adrien E. Desjardins
- Wellcome-Engineering & Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences, London, United Kingdom
- Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Roby D. Rakhit
- Department of Cardiovascular Medicine, Royal Free NHS Foundation Trust, London, United Kingdom
- Wellcome-Engineering & Physical Sciences Research Council (EPSRC) Centre for Interventional and Surgical Sciences, London, United Kingdom
| |
Collapse
|
16
|
Perez-Liva M, Yoganathan T, Herraiz JL, Porée J, Tanter M, Balvay D, Viel T, Garofalakis A, Provost J, Tavitian B. Ultrafast Ultrasound Imaging for Super-Resolution Preclinical Cardiac PET. Mol Imaging Biol 2020; 22:1342-1352. [PMID: 32602084 PMCID: PMC7497458 DOI: 10.1007/s11307-020-01512-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/13/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Physiological motion and partial volume effect (PVE) significantly degrade the quality of cardiac positron emission tomography (PET) images in the fast-beating hearts of rodents. Several Super-resolution (SR) techniques using a priori anatomical information have been proposed to correct motion and PVE in PET images. Ultrasound is ideally suited to capture real-time high-resolution cine images of rodent hearts. Here, we evaluated an ultrasound-based SR method using simultaneously acquired and co-registered PET-CT-Ultrafast Ultrasound Imaging (UUI) of the beating heart in closed-chest rodents. PROCEDURES The method was tested with numerical and animal data (n = 2) acquired with the non-invasive hybrid imaging system PETRUS that acquires simultaneously PET, CT, and UUI. RESULTS We showed that ultrasound-based SR drastically enhances the quality of PET images of the beating rodent heart. For the simulations, the deviations between expected and mean reconstructed values were 2 % after applying SR. For the experimental data, when using Ultrasound-based SR correction, contrast was improved by a factor of two, signal-to-noise ratio by 11 %, and spatial resolution by 56 % (~ 0.88 mm) with respect to static PET. As a consequence, the metabolic defect following an acute cardiac ischemia was delineated with much higher anatomical precision. CONCLUSIONS Our results provided a proof-of-concept that image quality of cardiac PET in fast-beating rodent hearts can be significantly improved by ultrasound-based SR, a portable low-cost technique. Improved PET imaging of the rodent heart may allow new explorations of physiological and pathological situations related with cardiac metabolism.
Collapse
Affiliation(s)
- Mailyn Perez-Liva
- Université de Paris, PARCC, INSERM, 56, rue Leblanc, 75015, Paris, France.
| | | | - Joaquin L Herraiz
- Nuclear Physics Group and IPARCOS, Complutense University of Madrid, Plaza de las Ciencias, 1, 28020, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jonathan Porée
- Physics for Medicine Paris, Inserm/ESPCI Paris-PSL/PSL-University/CNRS, 17 rue Moreau, 75012, Paris, France
- Engineering physics department, Polytechnique Montréal, Montréal, Canada
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm/ESPCI Paris-PSL/PSL-University/CNRS, 17 rue Moreau, 75012, Paris, France
| | - Daniel Balvay
- Université de Paris, PARCC, INSERM, 56, rue Leblanc, 75015, Paris, France
| | - Thomas Viel
- Université de Paris, PARCC, INSERM, 56, rue Leblanc, 75015, Paris, France
| | | | - Jean Provost
- Engineering physics department, Polytechnique Montréal, Montréal, Canada
- Montreal Heart Institute, Montréal, Canada
| | - Bertrand Tavitian
- Université de Paris, PARCC, INSERM, 56, rue Leblanc, 75015, Paris, France
- Service de Radiologie, APHP Centre, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
17
|
Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.105873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Perez-Liva M, Yoganathan T, Herraiz JL, Porée J, Tanter M, Balvay D, Viel T, Garofalakis A, Provost J, Tavitian B. Ultrafast Ultrasound Imaging for Super-Resolution Preclinical Cardiac PET. Mol Imaging Biol 2020. [DOI: https://doi.org/10.1007/s11307-020-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Purpose
Physiological motion and partial volume effect (PVE) significantly degrade the quality of cardiac positron emission tomography (PET) images in the fast-beating hearts of rodents. Several Super-resolution (SR) techniques using a priori anatomical information have been proposed to correct motion and PVE in PET images. Ultrasound is ideally suited to capture real-time high-resolution cine images of rodent hearts. Here, we evaluated an ultrasound-based SR method using simultaneously acquired and co-registered PET-CT-Ultrafast Ultrasound Imaging (UUI) of the beating heart in closed-chest rodents.
Procedures
The method was tested with numerical and animal data (n = 2) acquired with the non-invasive hybrid imaging system PETRUS that acquires simultaneously PET, CT, and UUI.
Results
We showed that ultrasound-based SR drastically enhances the quality of PET images of the beating rodent heart. For the simulations, the deviations between expected and mean reconstructed values were 2 % after applying SR. For the experimental data, when using Ultrasound-based SR correction, contrast was improved by a factor of two, signal-to-noise ratio by 11 %, and spatial resolution by 56 % (~ 0.88 mm) with respect to static PET. As a consequence, the metabolic defect following an acute cardiac ischemia was delineated with much higher anatomical precision.
Conclusions
Our results provided a proof-of-concept that image quality of cardiac PET in fast-beating rodent hearts can be significantly improved by ultrasound-based SR, a portable low-cost technique. Improved PET imaging of the rodent heart may allow new explorations of physiological and pathological situations related with cardiac metabolism.
Collapse
|
19
|
Zander D, Hüske S, Hoffmann B, Cui XW, Dong Y, Lim A, Jenssen C, Löwe A, Koch JB, Dietrich CF. Ultrasound Image Optimization ("Knobology"): B-Mode. Ultrasound Int Open 2020; 6:E14-E24. [PMID: 32885137 PMCID: PMC7458857 DOI: 10.1055/a-1223-1134] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/16/2020] [Indexed: 12/21/2022] Open
Abstract
Ultrasound is a ubiquitous and indispensable diagnostic and therapeutic tool in medicine. Due to modern equipment and automatic image optimization, the introduction of ultrasound imaging currently requires only little technical and physical knowledge. However, in-depth knowledge of the device functions and underlying mechanisms is essential for optimal image adjustment and documentation. From a medical as well as an aesthetic point of view, the goal should always be to achieve the best possible image quality. The first part of this article provides an overview of the handling of ultrasound systems, fundamental adjustments, and their optimization in B-mode ultrasound.
Collapse
Affiliation(s)
- David Zander
- Ruprecht Karls University Heidelberg Medical School, Heidelberg,
Germany
| | - Sebastian Hüske
- Ruprecht Karls University Heidelberg Medical School, Heidelberg,
Germany
| | - Beatrice Hoffmann
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center,
Harvard Medical School Boston, United States
| | - Xin-Wu Cui
- Medical Ultrasound, Tongji Hospital of Tongji Medical College of
Huazhong University of Science and Technology, Wuhan, China
| | - Yi Dong
- Ultrasound Department, Zhongshan Hospital Fudan University, Shanghai,
China
| | - Adrian Lim
- Imaging Department, Imperial College Healthcare NHS Trust, London,
United Kingdom of Great Britain and Northern Ireland
| | - Christian Jenssen
- Klinik für Innere Medizin, Krankenhaus
Märkisch-Oderland GmbH, Strausberg and Brandenburg Insitute for Clinical
Ultrasound at Medical University Brandenburg, Neuruppin, Germany
| | - Axel Löwe
- Department of General Internal Medicine, Hirslanden Clinics Beau Site,
Salem and Permanence, Switzerland
| | - Jonas B.H. Koch
- Department of General Internal Medicine, Hirslanden Clinics Beau Site,
Salem and Permanence, Switzerland
| | - Christoph F. Dietrich
- Department of General Internal Medicine, Hirslanden Clinics Beau Site,
Salem and Permanence, Switzerland
| |
Collapse
|
20
|
Rodriguez-Molares A, Rindal OMH, D'hooge J, Masoy SE, Austeng A, Lediju Bell MA, Torp H. The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:745-759. [PMID: 31796398 PMCID: PMC8354776 DOI: 10.1109/tuffc.2019.2956855] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the last 30 years, the contrast-to-noise ratio (CNR) has been used to estimate the contrast and lesion detectability in ultrasound images. Recent studies have shown that the CNR cannot be used with modern beamformers, as dynamic range alterations can produce arbitrarily high CNR values with no real effect on the probability of lesion detection. We generalize the definition of CNR based on the overlap area between two probability density functions. This generalized CNR (gCNR) is robust against dynamic range alterations; it can be applied to all kind of images, units, or scales; it provides a quantitative measure for contrast; and it has a simple statistical interpretation, i.e., the success rate that can be expected from an ideal observer at the task of separating pixels. We test gCNR on several state-of-the-art imaging algorithms and, in addition, on a trivial compression of the dynamic range. We observe that CNR varies greatly between the state-of-the-art methods, with improvements larger than 100%. We observe that trivial compression leads to a CNR improvement of over 200%. The proposed index, however, yields the same value for compressed and uncompressed images. The tested methods showed mismatched performance in terms of lesion detectability, with variations in gCNR ranging from -0.08 to +0.29. This new metric fixes a methodological flaw in the way we study contrast and allows us to assess the relevance of new imaging algorithms.
Collapse
|
21
|
Cui W, Li M, Gong G, Lu K, Sun S, Dong F. Guided trilateral filter and its application to ultrasound image despeckling. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Colchester RJ, Little C, Dwyer G, Noimark S, Alles EJ, Zhang EZ, Loder CD, Parkin IP, Papakonstantinou I, Beard PC, Finlay MC, Rakhit RD, Desjardins AE. All-Optical Rotational Ultrasound Imaging. Sci Rep 2019; 9:5576. [PMID: 30944379 PMCID: PMC6447544 DOI: 10.1038/s41598-019-41970-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 11/23/2022] Open
Abstract
Miniaturised high-resolution imaging devices are valuable for guiding minimally invasive procedures such as vascular stent placements. Here, we present all-optical rotational B-mode pulse-echo ultrasound imaging. With this device, ultrasound transmission and reception are performed with light. The all-optical transducer in the probe comprised an optical fibre that delivered pulsed excitation light to an optical head at the distal end with a multi-walled carbon nanotube and polydimethylsiloxane composite coating. This coating was photoacoustically excited to generate a highly directional ultrasound beam perpendicular to the optical fibre axis. A concave Fabry-Pérot cavity at the distal end of an optical fibre, which was interrogated with a tuneable continuous-wave laser, served as an omnidirectional ultrasound receiver. The transmitted ultrasound had a -6 dB bandwidth of 31.3 MHz and a peak-to-peak pressure of 1.87 MPa, as measured at 1.5 mm from the probe. The receiver had a noise equivalent pressure <100 Pa over a 20 MHz bandwidth. With a maximum outer probe diameter of 1.25 mm, the probe provided imaging with an axial resolution better than 50 µm, and a real-time imaging rate of 5 frames per second. To investigate the capabilities of the probe, intraluminal imaging was performed in healthy swine carotid arteries. The results demonstrate that the all-optical probe is viable for clinical rotational ultrasound imaging.
Collapse
Affiliation(s)
- Richard J Colchester
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK.
| | - Callum Little
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
- Department of Cardiology, Royal Free Hampstead NHS Trust, Pond Street, London, NW3 2QG, UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - George Dwyer
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
- Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sacha Noimark
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
- Materials Chemistry Research Centre, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Erwin J Alles
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
| | - Edward Z Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
| | - Christopher D Loder
- Department of Cardiology, Royal Free Hampstead NHS Trust, Pond Street, London, NW3 2QG, UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ioannis Papakonstantinou
- Photonic Innovations Lab, Department of Electronic and Electrical Engineering, University College London, Roberts Building, London, WC1E 7JE, UK
| | - Paul C Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
| | - Malcolm C Finlay
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
- William Harvey Cardiovascular Research Institute, Queen Mary University of London and Barts Health Centre, London, EC1A 7BE, UK
| | - Roby D Rakhit
- Department of Cardiology, Royal Free Hampstead NHS Trust, Pond Street, London, NW3 2QG, UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adrien E Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK
| |
Collapse
|
23
|
Francis KJ, Chinni B, Channappayya SS, Pachamuthu R, Dogra VS, Rao N. Multiview spatial compounding using lens-based photoacoustic imaging system. PHOTOACOUSTICS 2019; 13:85-94. [PMID: 30949434 PMCID: PMC6430722 DOI: 10.1016/j.pacs.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 05/07/2023]
Abstract
Recently, an acoustic lens has been proposed for volumetric focusing as an alternative to conventional reconstruction algorithms in Photoacoustic (PA) Imaging. Acoustic lens can significantly reduce computational complexity and facilitate the implementation of real-time and cost-effective systems. However, due to the fixed focal length of the lens, the Point Spread Function (PSF) of the imaging system varies spatially. Furthermore, the PSF is asymmetric, with the lateral resolution being lower than the axial resolution. For many medical applications, such as in vivo thyroid, breast and small animal imaging, multiple views of the target tissue at varying angles are possible. This can be exploited to reduce the asymmetry and spatial variation of system the PSF with simple spatial compounding. In this article, we present a formulation and experimental evaluation of this technique. PSF improvement in terms of resolution and Signal to Noise Ratio (SNR) with the proposed spatial compounding is evaluated through simulation. Overall image quality improvement is demonstrated with experiments on phantom and ex vivo tissue. When multiple views are not possible, an alternative residual refocusing algorithm is proposed. The performances of these two methods, both separately and in conjunction, are compared and their practical implications are discussed.
Collapse
Affiliation(s)
- Kalloor Joseph Francis
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India
- Corresponding author.
| | - Bhargava Chinni
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | - Rajalakshmi Pachamuthu
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India
| | - Vikram S. Dogra
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Navalgund Rao
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623, USA
- Principal corresponding author.
| |
Collapse
|
24
|
Lee J, Chang JH. Dual-Element Intravascular Ultrasound Transducer for Tissue Harmonic Imaging and Frequency Compounding: Development and Imaging Performance Assessment. IEEE Trans Biomed Eng 2019; 66:3146-3155. [PMID: 30835204 DOI: 10.1109/tbme.2019.2901005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE For accurate diagnosis of atherosclerosis, the high spatial and contrast resolutions of intravascular ultrasound (IVUS) images are a key requirement. Increasing the center frequency of IVUS is a simple solution to meet this requirement. However, this leads to a reduction in imaging depth due to the frequency-dependent attenuation of ultrasound. Here, we report a recently developed dual-element IVUS transducer for tissue harmonic imaging (THI) and frequency compounding to increase the spatial and contrast resolutions of IVUS images, while maintaining the imaging depth to assess the overall morphological change of blood vessels. METHODS One 35-MHz element is used for producing general IVUS images and the other 70-MHz element is for receiving the second harmonic signals induced by the 35-MHz ultrasound. The fundamental and second harmonic signals can also be used for frequency compound imaging to further improve contrast resolution. The spatial and contrast resolutions achieved by the developed transducer were evaluated through wire and tissue-mimicking phantom imaging tests. Additionally, the images of a stent deployed in a tissue-mimicking phantom and an excised pig artery were acquired to assess clinical usefulness of the transducer. RESULTS The results demonstrated that the developed IVUS transducer enables us to simultaneously examine the overall morphological change of blood vessels by the 35-MHz ultrasound images and the near vessel layers such as the intima, the media, and the adventitia by either THI or compound images with high spatial and contrast resolutions. In addition, the developed transducer facilitates the simultaneous acquisition of 35- and 70-MHz fundamental images when needed. CONCLUSION The developed dual-element IVUS transducer makes it possible to fully realize the potential benefits of IVUS in the diagnosis of atherosclerosis.
Collapse
|
25
|
Li Y, Winetraub Y, Liba O, de la Zerda A, Chu S. Optimization of the Trade-Off Between Speckle Reduction and Axial Resolution in Frequency Compounding. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:107-112. [PMID: 30028694 PMCID: PMC6499545 DOI: 10.1109/tmi.2018.2856857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We measured the reduction of speckle by frequency compounding using Gaussian pulses, which have the least time-bandwidth product. The experimental results obtained from a tissue mimicking phantom agree quantitatively with numerical simulations of randomly distributed point scatterers. For a fixed axial resolution, the amount of speckle reduction is found to approach a maximum as the number of bands increases while the total spectral range that they cover is kept constant. An analytical solution of the maximal speckle reduction is derived and shows that the maximum improves approximately as the inverse square root of the Gaussian pulse bandwidth. Since the axial resolution is proportional to the inverse of the pulse bandwidth, an optimized trade-off between speckle reduction and axial resolution is obtained. Considerations for the applications of the optimized trade-off are discussed.
Collapse
|
26
|
Cowan ML, Page JH, Norisuye T, Weitz DA. Dynamic sound scattering: Field fluctuation spectroscopy with singly scattered ultrasound in the near and far fields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1992. [PMID: 27914438 DOI: 10.1121/1.4962556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamic sound scattering (DSS) is a powerful acoustic technique for investigating the motion of particles or other inclusions inside an evolving medium. In DSS, this dynamic information is obtained by measuring the field autocorrelation function of the temporal fluctuations of singly scattered acoustic waves. The technique was initially introduced 15 years ago, but its technical aspects were not adequately discussed then. This paper addresses the need for a more complete account of the method by describing in detail two different implementations of this sound scattering technique, one of which is specifically adapted to a common experimental situation in ultrasonics. The technique is illustrated by the application of DSS to measure the mean square velocity fluctuations of particles in fluidized suspensions, as well as the dynamic velocity correlation length. By explaining the experimental and analytical methods involved in realizing the DSS technique in practice, the use of DSS will be facilitated for future studies of particulate suspension dynamics and particle properties over a wide range of particle sizes and concentrations, from millimeters down to nanometers, where the use of optical techniques is often limited by the opacity of the medium.
Collapse
Affiliation(s)
- M L Cowan
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - J H Page
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - T Norisuye
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - D A Weitz
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
27
|
Lahmiri S, Boukadoum M. A weighted bio-signal denoising approach using empirical mode decomposition. Biomed Eng Lett 2015. [DOI: 10.1007/s13534-015-0182-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Special issue on medical imaging. Biomed Eng Lett 2014. [DOI: 10.1007/s13534-014-0127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|