1
|
Liang A, Tao T, Chen J, Yang Y, Zhou X, Zhu X, Yu G. Immunocompetent tumor-on-a-chip: A translational tool for drug screening and cancer therapy. Crit Rev Oncol Hematol 2025; 210:104716. [PMID: 40194716 DOI: 10.1016/j.critrevonc.2025.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Tumor is one of the major diseases endangering human health while establishing an efficient in vitro tumor microenvironment (TME) model, which is an effective way to reveal the nature of the tumor and develop therapeutic methods. In recent years, due to the continuous development of lab-on-a-chip technology and tumor biology, various tumor-on-a-chip models applied to oncology research have emerged. Among them, the Immunotherapy-on-a-chip (ITOC) platform stands out with its ability to reflect immunological behavior in the TME. It is a class of in vitro tumor-on-a-chip with immune activity, which has good performance and the ability to reproduce TME. It can highly simulate the complex pathophysiological characteristics of tumors and be used to study various features related to tumor biological behavior. Currently, many advantageous functions and application values of ITOC platforms have been discovered and applied to tumor drug screening and development, tumor immunotherapy, and personalized therapy. In conclusion, the tumor-on-a-chip platform is a highly promising model for medical oncology research. In this review, the background of the ITOC platform, key factors for constructing an ideal ITOC platform, and the specific applications of ITOC platforms in tumor research and treatment are introduced.
Collapse
Affiliation(s)
- Anqi Liang
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China; The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Jiahui Chen
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Yucong Yang
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China.
| |
Collapse
|
2
|
Guarino V, Perrone E, De Luca E, Rainer A, Cesaria M, Zizzari A, Bianco M, Gigli G, Moroni L, Arima V. Pericyte-Assisted Vascular Lumen Organization in a Novel Dynamic Human Blood-Brain Barrier-on-Chip Model. Adv Healthc Mater 2025:e2401804. [PMID: 40326185 DOI: 10.1002/adhm.202401804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Organ-on-Chip (OoC) technology provides a powerful platform for neurovascular research, enabling the precise replication of the blood-brain barrier (BBB) microenvironment, including its 3D architecture and the influence of dynamic blood flow. This study introduces a novel microfluidic device designed to investigate the morphological and structural adaptations of human brain endothelial cells (ECs) within narrow, square-shaped microchannels that closely mimic the microvessels of the brain's microcirculation. The endothelial microchannels are layered above a microchamber filled with Matrigel and abluminal vascular cells, enhancing cell-cell interactions across the BBB interface. The system integrates co-culture with pericytes and astrocytes while subjecting brain ECs to physiologically relevant pulsatile flow. The findings reveal that the morphology and cytoskeletal organization of brain ECs are distinctly influenced by pulsatile flow depending on the presence of pericytes and astrocytes. Specifically, in the absence of perivascular support, brain ECs exhibit a stretched morphology with prominent actin stress fibers, while co-culture with pericytes and astrocytes promotes endothelial rearrangement, leading to lumen formation and enhanced barrier properties. This study highlights the essential role of perivascular cells in modulating endothelial responses under microvascular confinement and physiologically relevant flow. These insights advance in vitro models of the neurovascular unit and BBB mechanobiology.
Collapse
Affiliation(s)
- Vita Guarino
- Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Elisabetta Perrone
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Elisa De Luca
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
- CBN Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), Arnesano, 73010, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus bio-Medico di Roma, Rome, 00128, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, 00128, Italy
| | - Maura Cesaria
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Alessandra Zizzari
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Monica Bianco
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Giuseppe Gigli
- Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Lorenzo Moroni
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
- MERLN Institute for Technology-Inspired Regenerative Medicine, department of complex tissue regeneration, Maastricht University, Maastricht, 6211 LK, The Netherlands
| | - Valentina Arima
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| |
Collapse
|
3
|
Vanhoeijen R, Okkelman IA, Rogier N, Sedlačík T, Stöbener DD, Devriendt B, Dmitriev RI, Hoogenboom R. Poly(2-alkyl-2-oxazoline) Hydrogels as Synthetic Matrices for Multicellular Spheroid and Intestinal Organoid Cultures. Biomacromolecules 2025; 26:1860-1872. [PMID: 39898884 DOI: 10.1021/acs.biomac.4c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in organoid cultures by supporting cell proliferation and differentiation. A key feature of the ECM is its mechanical influence on the surrounding cells, directly affecting their behavior. Matrigel, the most commonly used ECM, is limited by its animal-derived origin, batch variability, and uncontrollable mechanical properties, restricting its use in 3D cell-model-based mechanobiological studies. Poly(2-alkyl-2-oxazoline) (PAOx) synthetic hydrogels represent an appealing alternative because of their reproducibility and versatile chemistry, enabling tuning of hydrogel stiffness and functionalization. Here, we studied PAOx hydrogels with differing compressive moduli for their potential to support 3D cell growth. PAOx hydrogels support spheroid and organoid growth over several days without the addition of ECM components. Furthermore, we discovered intestinal organoid epithelial polarity reversion in PAOx hydrogels and demonstrate how the tunable mechanical properties of PAOx can be used to study effects on the morphology and oxygenation of live multicellular spheroids.
Collapse
Affiliation(s)
- Robin Vanhoeijen
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Nette Rogier
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Tomáš Sedlačík
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
- Hydrogel Lab, Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 1903/5, Prague 6 166 28, Czech Republic
| | - Daniel D Stöbener
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| |
Collapse
|
4
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2025; 62:3813-3832. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
5
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
6
|
Zhong C, Tang Z, Yu X, Wang L, Ren C, Qin L, Zhou P. Advances in the Construction and Application of Bone-on-a-Chip Based on Microfluidic Technologies. J Biomed Mater Res B Appl Biomater 2024; 112:e35502. [PMID: 39555794 DOI: 10.1002/jbm.b.35502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Bone-on-a-chip (BOC) models that based on microfluidic technology have widely applied to understand bone physiology and the pathogenesis of related diseases. In this review, we provide an overview of bone biology and related diseases, explain the advantages and applications of microfluidic technology in the construction of BOC models, and summarize their progress in physiology, pathology, and drug development. Finally, we discussed the problems to be solved and the future directions of microfluidic technology and BOC platforms, so as to provide a reference for researchers to design better BOC models.
Collapse
Affiliation(s)
- Chang Zhong
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Zihui Tang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Yu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Lu Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Chenyuan Ren
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Gansu Health Vocational College, Lanzhou, China
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Zhang J, Kim MH, Lee S, Park S. Integration of nanobiosensors into organ-on-chip systems for monitoring viral infections. NANO CONVERGENCE 2024; 11:47. [PMID: 39589620 PMCID: PMC11599699 DOI: 10.1186/s40580-024-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
The integration of nanobiosensors into organ-on-chip (OoC) models offers a promising advancement in the study of viral infections and therapeutic development. Conventional research methods for studying viral infection, such as two-dimensional cell cultures and animal models, face challenges in replicating the complex and dynamic nature of human tissues. In contrast, OoC systems provide more accurate, physiologically relevant models for investigating viral infections, disease mechanisms, and host responses. Nanobiosensors, with their miniaturized designs and enhanced sensitivity, enable real-time, continuous, in situ monitoring of key biomarkers, such as cytokines and proteins within these systems. This review highlights the need for integrating nanobiosensors into OoC systems to advance virological research and improve therapeutic outcomes. Although there is extensive literature on biosensors for viral infection detection and OoC models for replicating infections, real integration of biosensors into OoCs for continuous monitoring remains unachieved. We discuss the advantages of nanobiosensor integration for real-time tracking of critical biomarkers within OoC models, key biosensor technologies, and current OoC systems relevant to viral infection studies. Additionally, we address the main technical challenges and propose solutions for successful integration. This review aims to guide the development of biosensor-integrated OoCs, paving the way for precise diagnostics and personalized treatments in virological research.
Collapse
Affiliation(s)
- Jiande Zhang
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Min-Hyeok Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Seulgi Lee
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| |
Collapse
|
8
|
Souza A, Nobrega G, Neves LB, Barbosa F, Ribeiro J, Ferrera C, Lima RA. Recent Advances of PDMS In Vitro Biomodels for Flow Visualizations and Measurements: From Macro to Nanoscale Applications. MICROMACHINES 2024; 15:1317. [PMID: 39597128 PMCID: PMC11596077 DOI: 10.3390/mi15111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review highlights recent advances in bioflow studies conducted using both PDMS microfluidic devices and macroscale biomodels, particularly in replicating physiological environments. PDMS microchannels are used in studies of blood cell deformation under confined conditions, demonstrating the potential to distinguish between healthy and diseased cells. PDMS also plays a critical role in fabricating arterial models from real medical images, including pathological conditions such as aneurysms. Cutting-edge applications, such as nanofluid hemodynamic studies and nanoparticle drug delivery in organ-on-a-chip platforms, represent the latest developments in PDMS research. In addition to these applications, this review critically discusses PDMS properties, fabrication methods, and its expanding role in micro- and nanoscale flow studies.
Collapse
Affiliation(s)
- Andrews Souza
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CMEMS-Uminho—Center for Microelectromechanical Systems, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
| | - Glauco Nobrega
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
| | - Lucas B. Neves
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Filipe Barbosa
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
| | - João Ribeiro
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Conrado Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain;
- Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Rui A. Lima
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CEFT—Transport Phenomena Research Center, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Neagu AN, Whitham D, Bruno P, Versaci N, Biggers P, Darie CC. Tumor-on-chip platforms for breast cancer continuum concept modeling. Front Bioeng Biotechnol 2024; 12:1436393. [PMID: 39416279 PMCID: PMC11480020 DOI: 10.3389/fbioe.2024.1436393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Our previous article entitled "Proteomics and its applications in breast cancer", proposed a Breast Cancer Continuum Concept (BCCC), including a Breast Cancer Cell Continuum Concept as well as a Breast Cancer Proteomic Continuum Concept. Breast cancer-on-chip (BCoC), breast cancer liquid biopsy-on-chip (BCLBoC), and breast cancer metastasis-on-chip (BCMoC) models successfully recapitulate and reproduce in vitro the principal mechanisms and events involved in BCCC. Thus, BCoC, BCLBoC, and BCMoC platforms allow for multiple cell lines co-cultivation to reproduce BC hallmark features, recapitulating cell proliferation, cell-to-cell communication, BC cell-stromal crosstalk and stromal activation, effects of local microenvironmental conditions on BC progression, invasion/epithelial-mesenchymal transition (EMT)/migration, intravasation, dissemination through blood and lymphatic circulation, extravasation, distant tissues colonization, and immune escape of cancer cells. Moreover, tumor-on-chip platforms are used for studying the efficacy and toxicity of chemotherapeutic drugs/nano-drugs or nutraceuticals. Therefore, the aim of this review is to summarize and analyse the main bio-medical roles of on-chip platforms that can be used as powerful tools to study the metastatic cascade in BC. As future direction, integration of tumor-on-chip platforms and proteomics-based specific approaches can offer important cues about molecular profile of the metastatic cascade, alowing for novel biomarker discovery. Novel microfluidics-based platforms integrating specific proteomic landscape of human milk, urine, and saliva could be useful for early and non-invasive BC detection. Also, risk-on-chip models may improve BC risk assessment and prevention based on the identification of biomarkers of risk. Moreover, multi-organ-on-chip systems integrating patient-derived BC cells and patient-derived scaffolds have a great potential to study BC at integrative level, due to the systemic nature of BC, for personalized and precision medicine. We also emphasized the strengths and weaknesses of BCoC and BCMoC platforms.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Nicholas Versaci
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Peter Biggers
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
10
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Huang Y, Liu T, Huang Q, Wang Y. From Organ-on-a-Chip to Human-on-a-Chip: A Review of Research Progress and Latest Applications. ACS Sens 2024; 9:3466-3488. [PMID: 38991227 DOI: 10.1021/acssensors.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Organ-on-a-Chip (OOC) technology, which emulates the physiological environment and functionality of human organs on a microfluidic chip, is undergoing significant technological advancements. Despite its rapid evolution, this technology is also facing notable challenges, such as the lack of vascularization, the development of multiorgan-on-a-chip systems, and the replication of the human body on a single chip. The progress of microfluidic technology has played a crucial role in steering OOC toward mimicking the human microenvironment, including vascularization, microenvironment replication, and the development of multiorgan microphysiological systems. Additionally, advancements in detection, analysis, and organoid imaging technologies have enhanced the functionality and efficiency of Organs-on-Chips (OOCs). In particular, the integration of artificial intelligence has revolutionized organoid imaging, significantly enhancing high-throughput drug screening. Consequently, this review covers the research progress of OOC toward Human-on-a-chip, the integration of sensors in OOCs, and the latest applications of organoid imaging technologies in the biomedical field.
Collapse
Affiliation(s)
- Yisha Huang
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Tong Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Huang
- School of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
13
|
Muthumalage T, Noel A, Thanavala Y, Alcheva A, Rahman I. Challenges in current inhalable tobacco toxicity assessment models: A narrative review. Tob Induc Dis 2024; 22:TID-22-102. [PMID: 38860150 PMCID: PMC11163881 DOI: 10.18332/tid/188197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024] Open
Abstract
Emerging tobacco products such as electronic nicotine delivery systems (ENDS) and heated tobacco products (HTPs) have a dynamic landscape and are becoming widely popular as they claim to offer a low-risk alternative to conventional smoking. Most pre-clinical laboratories currently exploit in vitro, ex vivo, and in vivo experimental models to assess toxicological outcomes as well as to develop risk-estimation models. While most laboratories have produced a wide range of cell culture and mouse model data utilizing current smoke/aerosol generators and standardized puffing profiles, much variation still exists between research studies, hindering the generation of usable data appropriate for the standardization of these tobacco products. In this review, we discuss current state-of-the-art in vitro and in vivo models and their challenges, as well as insights into risk estimation of novel products and recommendations for toxicological parameters for reporting, allowing comparability of the research studies between laboratories, resulting in usable data for regulation of these products before approval by regulatory authorities.
Collapse
Affiliation(s)
| | - Alexandra Noel
- School of Veterinary Medicine Louisiana State University, Baton Rouge, United States
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | - Aleksandra Alcheva
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
14
|
Shariff S, Kantawala B, Xochitun Gopar Franco W, Dejene Ayele N, Munyangaju I, Esam Alzain F, Nazir A, Wojtara M, Uwishema O. Tailoring epilepsy treatment: personalized micro-physiological systems illuminate individual drug responses. Ann Med Surg (Lond) 2024; 86:3557-3567. [PMID: 38846814 PMCID: PMC11152789 DOI: 10.1097/ms9.0000000000002078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/09/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Approximately 50 million people worldwide have epilepsy, with many not achieving seizure freedom. Organ-on-chip technology, which mimics organ-level physiology, could revolutionize drug development for epilepsy by replacing animal models in preclinical studies. The authors' goal is to determine if customized micro-physiological systems can lead to tailored drug treatments for epileptic patients. Materials and methods A comprehensive literature search was conducted utilizing various databases, including PubMed, Ebscohost, Medline, and the National Library of Medicine, using a predetermined search strategy. The authors focused on articles that addressed the role of personalized micro-physiological systems in individual drug responses and articles that discussed different types of epilepsy, diagnosis, and current treatment options. Additionally, articles that explored the components and design considerations of micro-physiological systems were reviewed to identify challenges and opportunities in drug development for challenging epilepsy cases. Results The micro-physiological system offers a more accurate and cost-effective alternative to traditional models for assessing drug effects, toxicities, and disease mechanisms. Nevertheless, designing patient-specific models presents critical considerations, including the integration of analytical biosensors and patient-derived cells, while addressing regulatory, material, and biological complexities. Material selection, standardization, integration of vascular systems, cost efficiency, real-time monitoring, and ethical considerations are also crucial to the successful use of this technology in drug development. Conclusion The future of organ-on-chip technology holds great promise, with the potential to integrate artificial intelligence and machine learning for personalized treatment of epileptic patients.
Collapse
Affiliation(s)
- Sanobar Shariff
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - Burhan Kantawala
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - William Xochitun Gopar Franco
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- University of Guadalajara, Guadalajara, Mexico
| | - Nitsuh Dejene Ayele
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Internal Medicine, Faculty of Medicine, Wolkite University, Wolkite, Ethiopia
| | - Isabelle Munyangaju
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- College of Medicine and General Surgery, Sudan University Of Science and Technology, Khartoum, Sudan
| | - Fatima Esam Alzain
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- College of Medicine and General Surgery, Sudan University Of Science and Technology, Khartoum, Sudan
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Madga Wojtara
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, NY
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
15
|
Addario G, Eussen D, Djudjaj S, Boor P, Moroni L, Mota C. 3D Printed Tubulointerstitium Chip as an In Vitro Testing Platform. Macromol Biosci 2024; 24:e2300440. [PMID: 37997523 DOI: 10.1002/mabi.202300440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Chronic kidney disease (CKD) ranks as the twelfth leading cause of death worldwide with limited treatment options. The development of in vitro models replicating defined segments of the kidney functional units, the nephrons, in a physiologically relevant and reproducible manner can facilitate drug testing. The aim of this study was to produce an in vitro organ-on-a-chip platform with extrusion-based three-dimensional (3D) printing. The manufacturing of the tubular platform was produced by printing sacrificial fibers with varying diameters, providing a suitable structure for cell adhesion and proliferation. The chip platform was seeded with primary murine tubular epithelial cells and human umbilical vein endothelial cells. The effect of channel geometry, its reproducibility, coatings for cell adhesion, and specific cell markers were investigated. The developed chip presents single and dual channels, mimicking segments of a renal tubule and the capillary network, together with an extracellular matrix gel analogue placed in the middle of the two channels, envisioning the renal tubulointerstitium in vitro. The 3D printed platform enables perfusable circular cross-section channels with fully automated, rapid, and reproducible manufacturing processes at low costs. This kidney tubulointerstitium on-a-chip provides the first step toward the production of more complex in vitro models for drug testing.
Collapse
Affiliation(s)
- Gabriele Addario
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Daphne Eussen
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
- Division of Nephrology, RWTH University of Aachen, 52074, Aachen, Germany
- Electron Microscopy Facility, RWTH University of Aachen, 52074, Aachen, Germany
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
16
|
Farhang Doost N, Srivastava SK. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications. BIOSENSORS 2024; 14:225. [PMID: 38785699 PMCID: PMC11118005 DOI: 10.3390/bios14050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Organ-on-a-chip (OOC) is an emerging technology that simulates an artificial organ within a microfluidic cell culture chip. Current cell biology research focuses on in vitro cell cultures due to various limitations of in vivo testing. Unfortunately, in-vitro cell culturing fails to provide an accurate microenvironment, and in vivo cell culturing is expensive and has historically been a source of ethical controversy. OOC aims to overcome these shortcomings and provide the best of both in vivo and in vitro cell culture research. The critical component of the OOC design is utilizing microfluidics to ensure a stable concentration gradient, dynamic mechanical stress modeling, and accurate reconstruction of a cellular microenvironment. OOC also has the advantage of complete observation and control of the system, which is impossible to recreate in in-vivo research. Multiple throughputs, channels, membranes, and chambers are constructed in a polydimethylsiloxane (PDMS) array to simulate various organs on a chip. Various experiments can be performed utilizing OOC technology, including drug delivery research and toxicology. Current technological expansions involve multiple organ microenvironments on a single chip, allowing for studying inter-tissue interactions. Other developments in the OOC technology include finding a more suitable material as a replacement for PDMS and minimizing artefactual error and non-translatable differences.
Collapse
Affiliation(s)
| | - Soumya K. Srivastava
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
17
|
Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett 2024; 14:451-464. [PMID: 38645590 PMCID: PMC11026358 DOI: 10.1007/s13534-024-00350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/23/2024] Open
Abstract
With the graying of the world's population, the morbidity of age-related chronic degenerative bone diseases, such as osteoporosis and osteoarthritis, is increasing yearly, leading to an increased risk of bone defects, while current treatment methods face many problems, such as shortage of grafts and an incomplete repair. Therefore, bone tissue engineering offers an alternative solution for regenerating and repairing bone tissues by constructing bioactive scaffolds with porous structures that provide mechanical support to damaged bone tissue while promoting angiogenesis and cell adhesion, proliferation, and activity. 3D printing technology has become the primary scaffold manufacturing method due to its ability to precisely control the internal pore structure and complex spatial shape of bone scaffolds. In contrast, the fast development of nanotechnology has provided more possibilities for the internal structure and biological function of scaffolds. This review focuses on the application of 3D printing technology in bone tissue engineering and nanotechnology in the field of bone tissue regeneration and repair, and explores the prospects for the integration of the two technologies.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| |
Collapse
|
18
|
Licciardello M, Traldi C, Cicolini M, Bertana V, Marasso SL, Cocuzza M, Tonda-Turo C, Ciardelli G. A miniaturized multicellular platform to mimic the 3D structure of the alveolar-capillary barrier. Front Bioeng Biotechnol 2024; 12:1346660. [PMID: 38646009 PMCID: PMC11026571 DOI: 10.3389/fbioe.2024.1346660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate in vitro the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium. A PDMS device was obtained assembling a top layer and a bottom layer obtained by replica molding. A polycaprolactone/gelatin (PCL-Gel) electrospun membrane was included within the two layers supporting the seeding of 3 cell phenotypes. Epithelial cells were grown on a fibroblast-laden collagen hydrogel located on the top side of the PCL-Gel mats while endothelial cells were seeded on the basolateral side of the membrane. The innovative design of the microfluidic device allows to replicate both cell-cell and cell-extracellular matrix interactions according to the in vivo cell arrangement along with the establishment of physiologically relevant air-liquid interface conditions. Indeed, high cell viability was confirmed for up to 10 days and the formation of a tight endothelial and epithelial barrier was assessed by immunofluorescence assays.
Collapse
Affiliation(s)
- Michela Licciardello
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Cecilia Traldi
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Martina Cicolini
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Valentina Bertana
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Simone Luigi Marasso
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
- CNR-IMEM, National Research Council-Institute of Materials for Electronics and Magnetism, Parma, Italy
| | - Matteo Cocuzza
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Chiara Tonda-Turo
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Gianluca Ciardelli
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Pisa, Italy
| |
Collapse
|
19
|
Olaizola-Rodrigo C, Palma-Florez S, Ranđelović T, Bayona C, Ashrafi M, Samitier J, Lagunas A, Mir M, Doblaré M, Ochoa I, Monge R, Oliván S. Tuneable hydrogel patterns in pillarless microfluidic devices. LAB ON A CHIP 2024; 24:2094-2106. [PMID: 38444329 DOI: 10.1039/d3lc01082a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Organ-on-chip (OOC) technology has recently emerged as a powerful tool to mimic physiological or pathophysiological conditions through cell culture in microfluidic devices. One of its main goals is bypassing animal testing and encouraging more personalized medicine. The recent incorporation of hydrogels as 3D scaffolds into microfluidic devices has changed biomedical research since they provide a biomimetic extracellular matrix to recreate tissue architectures. However, this technology presents some drawbacks such as the necessity for physical structures as pillars to confine these hydrogels, as well as the difficulty in reaching different shapes and patterns to create convoluted gradients or more realistic biological structures. In addition, pillars can also interfere with the fluid flow, altering the local shear forces and, therefore, modifying the mechanical environment in the OOC model. In this work, we present a methodology based on a plasma surface treatment that allows building cell culture chambers with abutment-free patterns capable of producing precise shear stress distributions. Therefore, pillarless devices with arbitrary geometries are needed to obtain more versatile, reliable, and biomimetic experimental models. Through computational simulation studies, these shear stress changes are demonstrated in different designed and fabricated geometries. To prove the versatility of this new technique, a blood-brain barrier model has been recreated, achieving an uninterrupted endothelial barrier that emulates part of the neurovascular network of the brain. Finally, we developed a new technology that could avoid the limitations mentioned above, allowing the development of biomimetic OOC models with complex and adaptable geometries, with cell-to-cell contact if required, and where fluid flow and shear stress conditions could be controlled.
Collapse
Affiliation(s)
- Claudia Olaizola-Rodrigo
- Tissue Microenvironment (TME), Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- BEOnChip S.L., Zaragoza, Spain.
| | - Sujey Palma-Florez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Teodora Ranđelović
- Tissue Microenvironment (TME), Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- CIBER-BBN, ISCIII, Spain
| | - Clara Bayona
- Tissue Microenvironment (TME), Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Mehran Ashrafi
- Tissue Microenvironment (TME), Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - Josep Samitier
- CIBER-BBN, ISCIII, Spain
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Anna Lagunas
- CIBER-BBN, ISCIII, Spain
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Spain
| | - Mònica Mir
- CIBER-BBN, ISCIII, Spain
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Manuel Doblaré
- Tissue Microenvironment (TME), Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- CIBER-BBN, ISCIII, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME), Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- CIBER-BBN, ISCIII, Spain
| | | | - Sara Oliván
- Tissue Microenvironment (TME), Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
20
|
Hashimoto K, Kumagai T, Nomura K, Miyagawa Y, Tago S, Takasaki K, Takahashi Y, Nishida H, Ichinose T, Hirano M, Hiraike H, Wada-Hiraike O, Sasajima Y, Kim SH, Nagasaka K. Validation of an on-chip p16 ink4a/Ki-67 dual immunostaining cervical cytology system using microfluidic device technology. Sci Rep 2023; 13:17052. [PMID: 37816765 PMCID: PMC10564753 DOI: 10.1038/s41598-023-44273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
More specific screening systems for cervical cancer may become necessary as the human papillomavirus (HPV) vaccine becomes more widespread. Although p16/Ki-67 dual-staining cytology has several advantages, it requires advanced diagnostic skills. Here, we developed an automated on-chip immunostaining method using a microfluidic device. An electroactive microwell array (EMA) microfluidic device with patterned thin-film electrodes at the bottom of each microwell was used for single-cell capture by dielectrophoresis. Immunostaining and dual staining for p16/Ki-67 were performed on diagnosed liquid cytology samples using the EMA device. The numbers of p16/Ki-67 dual-stained cells captured by the EMA device were determined and compared among the cervical intraepithelial neoplasia (CIN) lesion samples. Seven normal, fifteen CIN grade 3, and seven CIN grade 2 samples were examined. The percentage of dual-positive cells was 18.6% in the CIN grade 2 samples and 23.6% in the CIN grade 3 samples. The percentages of dual-positive staining increased significantly as the severity of the cervical lesions increased. p16/Ki67 dual immunostaining using the EMA device is as sensitive as the conventional method of confirming the histopathological diagnosis of cervical samples. This system enables a quantified parallel analysis at the individual cell level.
Collapse
Affiliation(s)
- Kei Hashimoto
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Tomoo Kumagai
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Kyosuke Nomura
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Yuko Miyagawa
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Saori Tago
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Kazuki Takasaki
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Yuko Takahashi
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Takayuki Ichinose
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Mana Hirano
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Haruko Hiraike
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Sasajima
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
21
|
Wu C, Sun J, Almuaalemi HYM, Sohan ASMMF, Yin B. Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm. MICROMACHINES 2023; 14:1577. [PMID: 37630113 PMCID: PMC10456452 DOI: 10.3390/mi14081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips' design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the existing structural design schemes lack careful consideration regarding the impact of chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads to redundant chip structures resulting from the separation of layout and wiring design. This study proposes a structural optimization method for microfluidic chips to address these issues utilizing a simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage, an advanced wiring method is used to designate the high wiring area, thereby increasing the success rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced through an improved layout adjustment method, which reduces the length of microchannels and the number of intersections. Finally, the effectiveness of the structural optimization approach is validated through six sets of test cases, successfully achieving the objective of enhancing the design quality of microfluidic chips.
Collapse
Affiliation(s)
- Chuang Wu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
- Nantong Fuleda Vehicle Accessory Component Co., Ltd., Nantong 226300, China
- Jiangsu Tongshun Power Technology Co., Ltd., Nantong 226300, China
| | - Jiju Sun
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
| | | | - A. S. M. Muhtasim Fuad Sohan
- Faculty of Engineering, Department of Mechanical Engineering, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
| |
Collapse
|
22
|
Van Os L, Engelhardt B, Guenat OT. Integration of immune cells in organs-on-chips: a tutorial. Front Bioeng Biotechnol 2023; 11:1191104. [PMID: 37324438 PMCID: PMC10267470 DOI: 10.3389/fbioe.2023.1191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Viral and bacterial infections continue to pose significant challenges for numerous individuals globally. To develop novel therapies to combat infections, more insight into the actions of the human innate and adaptive immune system during infection is necessary. Human in vitro models, such as organs-on-chip (OOC) models, have proven to be a valuable addition to the tissue modeling toolbox. The incorporation of an immune component is needed to bring OOC models to the next level and enable them to mimic complex biological responses. The immune system affects many (patho)physiological processes in the human body, such as those taking place during an infection. This tutorial review introduces the reader to the building blocks of an OOC model of acute infection to investigate recruitment of circulating immune cells into the infected tissue. The multi-step extravasation cascade in vivo is described, followed by an in-depth guide on how to model this process on a chip. Next to chip design, creation of a chemotactic gradient and incorporation of endothelial, epithelial, and immune cells, the review focuses on the hydrogel extracellular matrix (ECM) to accurately model the interstitial space through which extravasated immune cells migrate towards the site of infection. Overall, this tutorial review is a practical guide for developing an OOC model of immune cell migration from the blood into the interstitial space during infection.
Collapse
Affiliation(s)
- Lisette Van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 2023; 15:2341. [PMID: 37242919 PMCID: PMC10221499 DOI: 10.3390/polym15102341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Rujing Zhang
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Sandra Wilson
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Adrianus Indrat Aria
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| |
Collapse
|
24
|
Song JY, Lee HS, Kim DY, Yun HJ, Yi CC, Park SM. Fabrication Procedure for a 3D Hollow Nanofibrous Bifurcated-Tubular Scaffold by Conformal Electrospinning. ACS Macro Lett 2023; 12:659-666. [PMID: 37155320 DOI: 10.1021/acsmacrolett.3c00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electrospinning has shown great potential for the fabrication of 3D nanofibrous tubular scaffolds for bifurcated vascular grafts. However, fabrication of complex 3D nanofibrous tubular scaffolds with bifurcated or patient-specific shapes remains limited. In this study, a 3D hollow nanofibrous bifurcated-tubular scaffold was fabricated by the uniform and conformal deposition of electrospun nanofibers via conformal electrospinning. By conformal electrospinning, electrospun nanofibers are conformally deposited onto a complex shape, such as the bifurcated region, without large pores or defects. Owing to conformal electrospinning, a corner profile fidelity (FC), a measure of conformal deposition of electrospun nanofibers at the bifurcated region, was increased 4 times at the bifurcation angle (θB) of 60°, and all FC values of the scaffolds reached 100%, regardless of the θB. Furthermore, the thickness of the scaffolds could be controlled by varying the electrospinning time. Leakage-free liquid transfer was successfully achieved owing to the uniform and conformal deposition of electrospun nanofibers. Finally, the cytocompatibility and 3D mesh-based modeling of the scaffolds were demonstrated. Thus, conformal electrospinning can be used to fabricate leakage-free and complex 3D nanofibrous scaffolds for bifurcated vascular grafts.
Collapse
Affiliation(s)
- Jin Yeong Song
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Hyang Seob Lee
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Do Young Kim
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Hye Jin Yun
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
| | - Changryul Claud Yi
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
- Department of Plastic and Reconstructive Surgery, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
| | - Sang Min Park
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| |
Collapse
|
25
|
Butkutė A, Jurkšas T, Baravykas T, Leber B, Merkininkaitė G, Žilėnaitė R, Čereška D, Gulla A, Kvietkauskas M, Marcinkevičiūtė K, Schemmer P, Strupas K. Combined Femtosecond Laser Glass Microprocessing for Liver-on-Chip Device Fabrication. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2174. [PMID: 36984055 PMCID: PMC10056550 DOI: 10.3390/ma16062174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, lab-on-chip (LOC) devices are attracting more and more attention since they show vast prospects for various biomedical applications. Usually, an LOC is a small device that serves a single laboratory function. LOCs show massive potential for organ-on-chip (OOC) device manufacturing since they could allow for research on the avoidance of various diseases or the avoidance of drug testing on animals or humans. However, this technology is still under development. The dominant technique for the fabrication of such devices is molding, which is very attractive and efficient for mass production, but has many drawbacks for prototyping. This article suggests a femtosecond laser microprocessing technique for the prototyping of an OOC-type device-a liver-on-chip. We demonstrate the production of liver-on-chip devices out of glass by using femtosecond laser-based selective laser etching (SLE) and laser welding techniques. The fabricated device was tested with HepG2(GS) liver cancer cells. During the test, HepG2(GS) cells proliferated in the chip, thus showing the potential of the suggested technique for further OOC development.
Collapse
Affiliation(s)
- Agnė Butkutė
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Tomas Jurkšas
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
| | | | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, AT-8036 Graz, Austria
| | - Greta Merkininkaitė
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | | | | | - Aiste Gulla
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Mindaugas Kvietkauskas
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Kristina Marcinkevičiūtė
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, AT-8036 Graz, Austria
| | - Kęstutis Strupas
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| |
Collapse
|