1
|
Krone LB, Song SH, Jaramillo V, Violante IR. The Future of Non-Invasive Brain Stimulation in Sleep Medicine. J Sleep Res 2025:e70071. [PMID: 40370279 DOI: 10.1111/jsr.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
Non-invasive brain stimulation (NIBS) methods carry particular appeal as non-pharmacological approaches to inducing or improving sleep. However, intense research efforts to use transcranial magnetic stimulation (TMS) and electrical stimulation (tES) for sleep modulation have not yet delivered evidence-based NIBS treatments in sleep medicine. The main obstacles lie in insufficiently robust stimulation protocols that affect neurophysiological and self-reported sleep parameters, inadequately controlled-and explained-placebo effects, and heterogeneity in patient populations and outcome parameters. Recent technological advances, e.g., transcranial ultrasound stimulation (TUS) and temporal interference stimulation (TIS), make deep brain structures feasible targets. Real-time approaches, e.g., closed-loop auditory stimulation (CLAS), demonstrate efficacious modulation of different sleep oscillations by tuning stimulation to ongoing brain activity. The identification of sleep-regulatory regions and cell types in the cerebral cortex and thalamus provides new specific targets. To turn this neuroscientific progress into therapeutic advancement, conceptual reframing is warranted. Chronic insomnia may not be optimally suited to demonstrate NIBS efficacy due to the mismatch between self-reported symptoms and polysomnographic sleep parameters. More feasible initial approaches could be to (1) modulate specific sleep oscillations to promote specific sleep functions, (2) modify nightmares and traumatic memories with targeted memory reactivation, (3) increase 'wake intensity' in patients with depression to improve daytime fatigue and elevate sleep pressure and (4) disrupt pathological activity in sleep-dependent epilepsies. Effective treatments in these areas of sleep medicine seem in reach but require rigorously designed clinical trials to identify which NIBS strategies bring real benefit in sleep medicine.
Collapse
Affiliation(s)
- Lukas B Krone
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Seo Ho Song
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valeria Jaramillo
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- School of Psychology, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Ines R Violante
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
2
|
van Hattem T, Verkaar L, Krugliakova E, Adelhöfer N, Zeising M, Drinkenburg WHIM, Claassen JAHR, Bódizs R, Dresler M, Rosenblum Y. Targeting Sleep Physiology to Modulate Glymphatic Brain Clearance. Physiology (Bethesda) 2025; 40:0. [PMID: 39601891 DOI: 10.1152/physiol.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sleep has been postulated to play an important role in the removal of potentially neurotoxic molecules, such as amyloid-β, from the brain via the glymphatic system. Disturbed sleep, on the other hand, may contribute to the accumulation of neurotoxins in brain tissue, eventually leading to neuronal death. A bidirectional relationship has been proposed between impaired sleep and neurodegenerative processes, which start years before the onset of clinical symptoms associated with conditions like Alzheimer's and Parkinson's diseases. Given the heavy burden these conditions place on society, it is imperative to develop interventions that promote efficient brain clearance, thereby potentially aiding in the prevention or slowing of neurodegeneration. In this review, we explore whether the metabolic clearance function of sleep can be enhanced through sensory (e.g., auditory, vestibular) or transcranial (e.g., magnetic, ultrasound, infrared light) stimulation, as well as pharmacological (e.g., antiepileptics) and behavioral (e.g., sleeping position, physical exercise, cognitive intervention) modulation of sleep physiology. A particular focus is placed on strategies to enhance slow-wave activity during nonrapid eye movement sleep as a driver of glymphatic brain clearance. Overall, this review provides a comprehensive overview on the potential preventative and therapeutic applications of sleep interventions in combating neurodegeneration, cognitive decline, and dementia.
Collapse
Affiliation(s)
- Timo van Hattem
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieuwe Verkaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Krugliakova
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Adelhöfer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental Health, Ingolstadt, Germany
| | - Wilhelmus H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Jurgen A H R Claassen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yevgenia Rosenblum
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Kwon HB, Jeong J, Choi B, Park KS, Joo EY, Yoon H. Effect of closed-loop vibration stimulation on sleep quality for poor sleepers. Front Neurosci 2024; 18:1456237. [PMID: 39435444 PMCID: PMC11491432 DOI: 10.3389/fnins.2024.1456237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Recent studies have investigated the autonomic modulation method using closed-loop vibration stimulation (CLVS) as a novel strategy for enhancing sleep quality. This study aimed to explore the effects of CLVS on sleep quality, autonomic regulation, and brain activity in individuals with poor sleep quality. Methods Twenty-seven participants with poor sleep quality (Pittsburgh sleep quality index >5) underwent two experimental sessions using polysomnography and a questionnaire, one with CLVS (STIM) and the other without (SHAM). Results Sleep macrostructure analysis first showed that CLVS significantly reduced the total time, proportion, and average duration of waking after sleep onset. These beneficial effects were paralleled by significantly increased self-reported sleep quality. Moreover, there was a significant increase in the normalized high-frequency (nHF) and electroencephalography relative powers of delta activity during N3 sleep under STIM. Additionally, coherence analysis between nHF and delta activity revealed strengthened coupling between cortical and cardiac oscillations. Discussion This study demonstrated that CLVS significantly improves sleep quality in individuals with poor sleep quality by enhancing both subjective and objective measures. These findings suggest that CLVS has the potential to be a practical, noninvasive tool for enhancing sleep quality in individuals with sleep disturbances, offering an effective alternative to pharmacological treatments.
Collapse
Affiliation(s)
- Hyun Bin Kwon
- Research Institute of BRLAB, Inc., Seoul, Republic of Korea
| | | | - Byunghun Choi
- Research Institute of BRLAB, Inc., Seoul, Republic of Korea
| | - Kwang Suk Park
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heenam Yoon
- Research Institute of BRLAB, Inc., Seoul, Republic of Korea
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Liu F, Wang H, Bai B, Yin H, Liu Y, Wang Y, Liu Q, Wang S, Ma H, Geng Q. Obstructive Sleep Apnea as a Key Contributor to Mental Stress-Induced Myocardial Ischemia in Female Angina Patients with No Obstructive Coronary Artery Disease. Nat Sci Sleep 2024; 16:823-832. [PMID: 38911317 PMCID: PMC11192149 DOI: 10.2147/nss.s445219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Mental stress induced myocardial ischemia (MSIMI) is regarded as the primary cause of the angina with no obstructive coronary artery disease (ANOCA). Obstructive sleep apnea (OSA) is autonomously linked to obstructive coronary heart disease, hypertension, and sudden cardiac death. Similar to the impact of psychological stress on the cardiovascular system, individuals with OSA experience periodic nocturnal hypoxia, resulting in the activation of systemic inflammation, oxidative stress, endothelial dysfunction, and sympathetic hyperactivity. The contribution of OSA to MSIMI in ANOCA patients is unclear. To explore the prevalence of OSA in ANOCA patients and the correlation between OSA and MSIMI, a prospective cohort of female ANOCA patients was recruited. Patients and Methods We recruited female patients aged 18 to 75 years old with ANOCA and evaluated MSIMI using positron emission tomography-computed tomography. Subsequently, Level III portable monitors was performed to compare the relationship between OSA and MSIMI. Results There is higher REI (7.8 vs 2.6, P=0.019), ODI (4.7 vs 9.2, P=0.028) and percentage of OSA (67.74% vs 33.33%, P=0.004) in MSIMI patients. The patients diagnosed with OSA demonstrated higher myocardial perfusion imaging scores (SSS: 1.5 vs 3, P = 0.005, SDS: 1 vs 3, P = 0.007). Adjusted covariates, the risk of developing MSIMI remained 3.6 times higher in OSA patients (β=1.226, OR = 3.408 (1.200-9.681), P = 0.021). Conclusion Patients with MSIMI exhibit a greater prevalence of OSA. Furthermore, the myocardial blood flow perfusion in patients with OSA is reduced during mental stress.
Collapse
Affiliation(s)
- Fengyao Liu
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Haochen Wang
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Bingqing Bai
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Han Yin
- Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuting Liu
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Yu Wang
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Quanjun Liu
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Shuxia Wang
- Department of Nuclear Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Huan Ma
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Qingshan Geng
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
- Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| |
Collapse
|
5
|
Chen R, Huang L, Wang R, Fei J, Wang H, Wang J. Advances in Non-Invasive Neuromodulation Techniques for Improving Cognitive Function: A Review. Brain Sci 2024; 14:354. [PMID: 38672006 PMCID: PMC11048722 DOI: 10.3390/brainsci14040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Non-invasive neuromodulation techniques are widely utilized to study and improve cognitive function, with the aim of modulating different cognitive processes. For workers performing high-intensity mental and physical tasks, extreme fatigue may not only affect their working efficiency but may also lead to cognitive decline or cognitive impairment, which, in turn, poses a serious threat to their physical health. The use of non-invasive neuromodulation techniques has important research value for improving and enhancing cognitive function. In this paper, we review the research status, existing problems, and future prospects of transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and transcutaneous acupoint stimulation (TAS), which are the most studied physical methods in non-invasive neuromodulation techniques to improve and enhance cognition. The findings presented in this paper will be of great reference value for the in-depth study of non-invasive neuromodulation techniques in the field of cognition.
Collapse
Affiliation(s)
- Ruijuan Chen
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (R.C.); (H.W.)
| | - Lengjie Huang
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China; (L.H.); (R.W.); (J.F.)
| | - Rui Wang
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China; (L.H.); (R.W.); (J.F.)
| | - Jieying Fei
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China; (L.H.); (R.W.); (J.F.)
| | - Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (R.C.); (H.W.)
| | - Jinhai Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (R.C.); (H.W.)
| |
Collapse
|
6
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|