1
|
Wang YP, Zhang RQ, Li N, Wang QS, Yu K, Fan M, Zhang XW, Feng LX, Liu X. The involvement and possible targeting of cardiolipins degradation and disturbed linoleic acid metabolism in cardiac atrophy under cancer cachexia. Eur J Pharmacol 2024; 985:177108. [PMID: 39515561 DOI: 10.1016/j.ejphar.2024.177108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cardiac atrophy is one of the critical characteristics of cancer cachexia though its mechanisms had not been fully clarified. In the present study, to study the mechanisms of cardiac atrophy in cancer cachexia and search for possible drug targets, cancer cachexia mice bearing C26 colon tumor cells and cultured H9c2 cardiomyocytes induced with simulated cancer cachexia injuries were used as in vivo and in vitro model, respectively. Results of both spatial metabolomics and LC-MS non-targeted metabolomics analysis of heart tissues suggested the disturbance of glycerophospholipid and fatty acid metabolism in the cancer cachexia hearts. Results of lipidomic analysis confirmed that the fatty acid composition of glycerophospholipids changed and the levels of linoleic acid (LA)-rich cardiolipins (CLs) significantly decreased. GC-MS analysis of fatty acids profile confirmed that the level of LA significantly increased and the ratio value of ω-6/ω-3 polyunsaturated fatty acids (PUFA) also increased in the cancer cachexia hearts. In H9c2 cardiomyocytes induced by simulated cancer cachexia injuries, degradation of CLs were also observed. Furthermore, SS-31, a tetrapeptide targeting CLs, could protect the H9c2 cardiomyocytes under simulated cancer cachexia injury by ameliorating the degradation of CLs, inhibiting apoptosis and attenuating the decrease in cell size. Collectively, these results have provided new insights into the cardiac atrophy in cancer cachexia, in which degradation of glycerophospholipids such as CLs and increase in LA and AA-related oxylipins might be important contributing factors and possible therapy targets.
Collapse
Affiliation(s)
- Yue-Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Qin Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong-Sen Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiong-Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Li-Xing Feng
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, China.
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ogilvie LM, Coyle-Asbil B, Brunt KR, Petrik J, Simpson JA. Therapy-naïve malignancy causes cardiovascular disease: a state-of-the-art cardio-oncology perspective. Am J Physiol Heart Circ Physiol 2024; 326:H1515-H1537. [PMID: 38639740 DOI: 10.1152/ajpheart.00795.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
3
|
de Lima Junior EA, Teixeira AADS, Silveira LS, Jové Q, Ladrón NÁ, Pereira MG, López-Soriano FJ, Argilés JM, Brum PC, Busquets S, Neto JCR. Formoterol reduces muscle wasting in mice undergoing doxorubicin chemotherapy. Front Oncol 2024; 13:1237709. [PMID: 38234397 PMCID: PMC10791811 DOI: 10.3389/fonc.2023.1237709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Background Even though doxorubicin (DOX) chemotherapy promotes intense muscle wasting, this drug is still widely used in clinical practice due to its remarkable efficiency in managing cancer. On the other hand, intense muscle loss during the oncological treatment is considered a bad prognosis for the disease's evolution and the patient's quality of life. In this sense, strategies that can counteract the muscle wasting induced by DOX are essential. In this study, we evaluated the effectiveness of formoterol (FOR), a β2-adrenoceptor agonist, in managing muscle wasting caused by DOX. Methods and results To evaluate the effect of FOR on DOX-induced muscle wasting, mice were treated with DOX (2.5 mg/kg b.w., i.p. administration, twice a week), associated or not to FOR treatment (1 mg/kg b.w., s.c. administration, daily). Control mice received vehicle solution. A combination of FOR treatment with DOX protected against the loss of body weight (p<0.05), muscle mass (p<0.001), and grip force (p<0.001) promoted by chemotherapy. FOR also attenuated muscle wasting (p<0.01) in tumor-bearing mice on chemotherapy. The potential mechanism by which FOR prevented further DOX-induced muscle wasting occurred by regulating Akt/FoxO3a signaling and gene expression of atrogenes in skeletal muscle. Conclusions Collectively, our results suggest that FOR can be used as a pharmacological strategy for managing muscle wasting induced by DOX. This study provides new insights into the potential therapeutic use of FOR to improve the overall wellbeing of cancer patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Edson Alves de Lima Junior
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | | | - Loreana Sanches Silveira
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Queralt Jové
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - Natalia Álvarez Ladrón
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - Marcelo G. Pereira
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences University of Leeds, Leeds, United Kingdom
| | - Francisco Javier López-Soriano
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain and Institut de Biomedicina de la Barcelona (IBUB), Barcelona, Spain
| | - José Cesar Rosa Neto
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Cancer-associated cachexia - understanding the tumour macroenvironment and microenvironment to improve management. Nat Rev Clin Oncol 2023; 20:250-264. [PMID: 36806788 DOI: 10.1038/s41571-023-00734-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Cachexia is a devastating, multifactorial and often irreversible systemic syndrome characterized by substantial weight loss (mainly of skeletal muscle and adipose tissue) that occurs in around 50-80% of patients with cancer. Although this condition mainly affects skeletal muscle (which accounts for approximately 40% of total body weight), cachexia is a multi-organ syndrome that also involves white and brown adipose tissue, and organs including the bones, brain, liver, gut and heart. Notably, cachexia accounts for up to 20% of cancer-related deaths. Cancer-associated cachexia is invariably associated with systemic inflammation, anorexia and increased energy expenditure. Understanding these mechanisms is essential, and the progress achieved in this area over the past decade could help to develop new therapeutic approaches. In this Review, we examine the currently available evidence on the roles of both the tumour macroenvironment and microenvironment in cancer-associated cachexia, and provide an overview of the novel therapeutic strategies developed to manage this syndrome.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Guler MN, Tscheiller NM, Sabater-Molina M, Gimeno JR, Nebigil CG. Evidence for reciprocal network interactions between injured hearts and cancer. Front Cardiovasc Med 2022; 9:929259. [PMID: 35911555 PMCID: PMC9334681 DOI: 10.3389/fcvm.2022.929259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) and cancer are responsible for 50% of all deaths in middle-aged people. These diseases are tightly linked, which is supported by recent epidemiological studies and case control studies, demonstrating that HF patients have a higher risk to develop cancer such as lung and breast cancer. For HF patients, a one-size-fits-all clinical management strategy is not effective and patient management represents a major economical and clinical burden. Anti-cancer treatments-mediated cardiotoxicity, leading to HF have been extensively studied. However, recent studies showed that even before the initiation of cancer therapy, cancer patients presented impairments in the cardiovascular functions and exercise capacity. Thus, the optimal cardioprotective and surveillance strategies should be applied to cancer patients with pre-existing HF. Recently, preclinical studies addressed the hypothesis that there is bilateral interaction between cardiac injury and cancer development. Understanding of molecular mechanisms of HF-cancer interaction can define the profiles of bilateral signaling networks, and identify the disease-specific biomarkers and possibly therapeutic targets. Here we discuss the shared pathological events, and some treatments of cancer- and HF-mediated risk incidence. Finally, we address the evidences on bilateral connection between cardiac injury (HF and early cardiac remodeling) and cancer through secreted factors (secretoms).
Collapse
Affiliation(s)
- Melisa N. Guler
- Faculty of Medicine, University of Campania Luigi Vanvitelli, Caserta, Italy
- University of Strasbourg, INSERM, UMR 1260, Nanoregenerative Medicine, Strasbourg, France
- Fédération de Médecine Translationnelle de l’Université de Strasbourg, Strasbourg, France
| | - Nathalie M. Tscheiller
- University of Strasbourg, INSERM, UMR 1260, Nanoregenerative Medicine, Strasbourg, France
- Fédération de Médecine Translationnelle de l’Université de Strasbourg, Strasbourg, France
| | - Maria Sabater-Molina
- Servicio de Cardiología, Laboratorio de Cardiogenética, Centro de Investigacion Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Hospital Clínico Universitario Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Juan R. Gimeno
- Servicio de Cardiología, Laboratorio de Cardiogenética, Centro de Investigacion Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Hospital Clínico Universitario Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Canan G. Nebigil
- University of Strasbourg, INSERM, UMR 1260, Nanoregenerative Medicine, Strasbourg, France
- Fédération de Médecine Translationnelle de l’Université de Strasbourg, Strasbourg, France
- *Correspondence: Canan G. Nebigil,
| |
Collapse
|
6
|
Wiggs MP, Beaudry AG, Law ML. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022; 11:cells11121931. [PMID: 35741060 PMCID: PMC9221803 DOI: 10.3390/cells11121931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cachexia is a syndrome of progressive weight loss and muscle wasting occurring in many advanced cancer patients. Cachexia significantly impairs quality of life and increases mortality. Cardiac atrophy and dysfunction have been observed in patients with cachexia, which may contribute to cachexia pathophysiology. However, relative to skeletal muscle, little research has been carried out to understand the mechanisms of cardiomyopathy in cachexia. Here, we review what is known clinically about the cardiac changes occurring in cachexia, followed by further discussion of underlying physiological and molecular mechanisms contributing to cachexia-induced cardiomyopathy. Impaired cardiac contractility and relaxation may be explained by a complex interplay of significant heart muscle atrophy and metabolic remodeling, including mitochondrial dysfunction. Because cardiac muscle has fundamental differences compared to skeletal muscle, understanding cardiac-specific effects of cachexia may bring light to unique therapeutic targets and ultimately improve clinical management for patients with cancer cachexia.
Collapse
Affiliation(s)
- Michael P. Wiggs
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Anna G. Beaudry
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Michelle L. Law
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA
- Correspondence: ; Tel.: +1-(254)-710-6003
| |
Collapse
|
7
|
Review of Mechanisms and Treatment of Cancer-Induced Cardiac Cachexia. Cells 2022; 11:cells11061040. [PMID: 35326491 PMCID: PMC8947347 DOI: 10.3390/cells11061040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cachexia is a multifactorial, paraneoplastic syndrome that impacts roughly half of all cancer patients. It can negatively impact patient quality of life and prognosis by causing physical impairment, reducing chemotherapy tolerance, and precluding them as surgical candidates. While there is substantial research on cancer-induced skeletal muscle cachexia, there are comparatively fewer studies and therapies regarding cardiac cachexia in the setting of malignancy. A literature review was performed using the PubMed database to identify original articles pertaining to cancer-induced cardiac cachexia, including its mechanisms and potential therapeutic modalities. Seventy studies were identified by two independent reviewers based on inclusion and exclusion criteria. While there are multiple studies addressing the pathophysiology of cardiac-induced cancer cachexia, there are no studies evaluating therapeutic options in the clinical setting. Many treatment modalities including nutrition, heart failure medication, cancer drugs, exercise, and gene therapy have been explored in in vitro and mice models with varying degrees of success. While these may be beneficial in cancer patients, further prospective studies specifically focusing on the assessment and treatment of the cardiac component of cachexia are needed.
Collapse
|
8
|
Cardiac Complications: The Understudied Aspect of Cancer Cachexia. Cardiovasc Toxicol 2022; 22:254-267. [PMID: 35171467 DOI: 10.1007/s12012-022-09727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
The global burden of cancer cachexia is increasing along with drastic increase in cancer patients. Cancer itself leads to cachexia, and cachexia development is associated with events like altered hemodynamics, and reduced functional capacity of the heart among others which lead to failure of the heart and are called cardiovascular complications associated with cancer cachexia. In some patients, the anti-cancer therapy also leads to this cardiovascular complications. So, in this review, an attempt is made to understand the mechanisms, pathophysiology of cardiovascular events in cachectic patients. Important processes which cause cardiovascular complications include alterations in the structure of the heart, loss of cardiac mass and functioning, cardiac fibrosis and cardiac remodeling, apoptosis, cardiac muscle atrophy, and mitochondrial alterations. Previously, the available treatment options were limited to nutraceuticals and physical exercise. Recently, studies with some prospective agents that can improve cardiac health have been reported, but whether their action is effective in cardiovascular complications associated with cancer cachexia is not known or are under trial.
Collapse
|
9
|
Repurposing of Antibiotic Sulfisoxazole Inhibits Lipolysis in Pre-Clinical Model of Cancer-Associated Cachexia. BIOLOGY 2021; 10:biology10080700. [PMID: 34439933 PMCID: PMC8389237 DOI: 10.3390/biology10080700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022]
Abstract
Clinical management of cancer-associated cachexia, a multi-organ wasting syndrome, has been challenging without effective treatment strategies. An effective treatment that directly targets cancer-induced wasting is desperately needed to improve the quality of life and the survival of cancer patients. Recently, an antibiotic SFX was shown to have anti-tumour and anti-metastatic effects in mouse models of breast cancer. Hence, in this study, we examined the efficacy of SFX in the treatment of cancer-induced cachexia. C26 cachexic mice models were administered with SFX, and the tumour volume and body weight were regularly measured. Blood glucose, skeletal muscles, and adipose tissue were examined at the endpoint. Contrary to a previous study, SFX did not reduce the tumour volume in mice bearing C26 cells. Administration of SFX neither revealed any survival benefit nor rescued C26 cachectic mice from muscle wasting. Interestingly, SFX administration partially rescued (~10%) tumour-induced weight loss by preserving both the subcutaneous and intestinal fat mass. Together, these results suggest that the administration of SFX could partially rescue cancer-induced weight loss by inhibiting lipolysis. As anti-cachexia therapies are scarce, the results could facilitate the design of combinatorial therapies involving SFX, standard-of-care chemotherapeutics, and drugs that inhibit muscle atrophy for the treatment of cancer cachexia.
Collapse
|
10
|
Braddock M. From Target Identification to Drug Development in Space: Using the Microgravity Assist. Curr Drug Discov Technol 2021; 17:45-56. [PMID: 30648510 DOI: 10.2174/1570163816666190112150014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
The unique nature of microgravity encountered in space provides an opportunity for drug discovery and development that cannot be replicated on Earth. From the production of superior protein crystals to the identification and validation of new drug targets to microarray analyses of transcripts attenuated by microgravity, there are numerous examples which demonstrate the benefit of exploiting the space environment. Moreover, studies conducted on Space Shuttle missions, the International Space Station and other craft have had a direct benefit for drug development programmes such as those directed against reducing bone and muscle loss or increasing bone formation. This review will highlight advances made in both drug discovery and development and offer some future insight into how drug discovery and associated technologies may be further advanced using the microgravity assist.
Collapse
Affiliation(s)
- Martin Braddock
- Sherwood Observatory, Mansfield and Sutton Astronomical Society, Coxmoor Road, Sutton-in-Ashfield, Nottinghamshire, NG17 5LF, United Kingdom
| |
Collapse
|
11
|
Busquets S, Castillejo M, Jové Q, Jude B, Mejías P, López-Soriano FJ, Argilés JM. Lack of Synergy Between β-Agonist Treatment and a Blockage of Sarcoplasmic Calcium Flow in a Rat Cancer Cachexia Model. Onco Targets Ther 2021; 14:1953-1959. [PMID: 33762827 PMCID: PMC7982712 DOI: 10.2147/ott.s293834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background During cancer cachexia, both skeletal muscle and adipose tissue losses take place. The use of β2-agonists, formoterol in particular, has proven to be very successful in the treatment of the syndrome in pre-clinical models. The object of the present research was to study the effects of a combination of formoterol and dantrolene, an inhibitor of the ryanodine receptor 1 (RyR1), on body weight loss and cachexia in tumour-bearing animals. Methods Rats were separated into two groups: controls (C) and tumour bearing (TB). TB group was further subdivided into four groups: untreated (saline as a vehicle), treated with Formoterol (TF) (0,3 mg/kg body weight in saline, subcutaneous (s.c.), daily), treated with Dantrolene (TD) (5 mg/kg body weight in saline, subcutaneous (s.c.), daily), and double-treated treated (TFD) with Formoterol (0,3 mg/kg body weight, subcutaneous (s.c.), daily) and Dantrolene (5 mg/kg body weight, subcutaneous (s.c.), daily). 7 days after tumour transplantation, muscle weight, grip force, and total physical activity were specified in all experimental groups. Results While formoterol had, as in previous studies, a very positive effect in reducing muscle weight loss, dantrolene had no effects, neither on skeletal muscle nor on any of the parameters studied. Finally, the combined treatment (formoterol and dantrolene) did not result in any significant benefit on the action of the β2-agonist. Conclusion It is concluded that, in the preclinical cachectic model used, no synergy exists between β2-agonist treatment and the blockade of sarcoplasmic-calcium flow.
Collapse
Affiliation(s)
- Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Marta Castillejo
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Queralt Jové
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Baptiste Jude
- Laboratoire de Physiologie - EA 4324 ORPHY, IBSAM, Université de Bretagne Occidentale, Brest, France
| | - Patricia Mejías
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
de Boer RA, Hulot J, Tocchetti CG, Aboumsallem JP, Ameri P, Anker SD, Bauersachs J, Bertero E, Coats AJ, Čelutkienė J, Chioncel O, Dodion P, Eschenhagen T, Farmakis D, Bayes‐Genis A, Jäger D, Jankowska EA, Kitsis RN, Konety SH, Larkin J, Lehmann L, Lenihan DJ, Maack C, Moslehi JJ, Müller OJ, Nowak‐Sliwinska P, Piepoli MF, Ponikowski P, Pudil R, Rainer PP, Ruschitzka F, Sawyer D, Seferovic PM, Suter T, Thum T, van der Meer P, Van Laake LW, von Haehling S, Heymans S, Lyon AR, Backs J. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 2020; 22:2272-2289. [PMID: 33094495 PMCID: PMC7894564 DOI: 10.1002/ejhf.2029] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022] Open
Abstract
The co-occurrence of cancer and heart failure (HF) represents a significant clinical drawback as each disease interferes with the treatment of the other. In addition to shared risk factors, a growing body of experimental and clinical evidence reveals numerous commonalities in the biology underlying both pathologies. Inflammation emerges as a common hallmark for both diseases as it contributes to the initiation and progression of both HF and cancer. Under stress, malignant and cardiac cells change their metabolic preferences to survive, which makes these metabolic derangements a great basis to develop intersection strategies and therapies to combat both diseases. Furthermore, genetic predisposition and clonal haematopoiesis are common drivers for both conditions and they hold great clinical relevance in the context of personalized medicine. Additionally, altered angiogenesis is a common hallmark for failing hearts and tumours and represents a promising substrate to target in both diseases. Cardiac cells and malignant cells interact with their surrounding environment called stroma. This interaction mediates the progression of the two pathologies and understanding the structure and function of each stromal component may pave the way for innovative therapeutic strategies and improved outcomes in patients. The interdisciplinary collaboration between cardiologists and oncologists is essential to establish unified guidelines. To this aim, pre-clinical models that mimic the human situation, where both pathologies coexist, are needed to understand all the aspects of the bidirectional relationship between cancer and HF. Finally, adequately powered clinical studies, including patients from all ages, and men and women, with proper adjudication of both cancer and cardiovascular endpoints, are essential to accurately study these two pathologies at the same time.
Collapse
Affiliation(s)
- Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jean‐Sébastien Hulot
- Université de Paris, PARCC, INSERMParisFrance
- CIC1418 and DMU CARTE, AP‐HP, Hôpital Européen Georges‐PompidouParisFrance
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational ResearchFederico II UniversityNaplesItaly
| | | | - Pietro Ameri
- Department of Internal Medicine and Center of Excellence for Biomedical ResearchUniversity of GenovaGenoaItaly
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Stefan D. Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site BerlinCharité‐Universitätsmedizin Berlin (Campus CVK)BerlinGermany
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Edoardo Bertero
- Comprehensive Heart Failure CenterUniversity Clinic WürzburgWürzburgGermany
| | | | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’University of Medicine Carol DavilaBucharestRomania
| | | | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Partner Site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research)HamburgGermany
| | - Dimitrios Farmakis
- University of Cyprus Medical SchoolNicosiaCyprus
- Cardio‐Oncology Clinic, Heart Failure Unit, Department of CardiologyAthens University Hospital ‘Attikon’, National and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Antoni Bayes‐Genis
- Heart Failure Unit and Cardiology DepartmentHospital Universitari Germans Trias i Pujol, CIBERCVBadalonaSpain
- Department of MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- CIBER CardiovascularInstituto de Salud Carlos IIIMadridSpain
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT)University Hospital HeidelbergHeidelbergGermany
| | - Ewa A. Jankowska
- Department of Heart Diseases, Wroclaw Medical University, and Centre for Heart DiseasesUniversity HospitalWroclawPoland
| | - Richard N. Kitsis
- Departments of Medicine (Cardiology) and Cell BiologyWilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, Albert Einstein College of MedicineNew YorkNYUSA
| | - Suma H. Konety
- Cardiovascular Division, Cardio‐Oncology Program, Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | | | - Lorenz Lehmann
- Cardio‐Oncology Unit, Department of CardiologyUniversity of HeidelbergHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHeidelberg/MannheimGermany
- DKFZ (German Cancer Research Center)HeidelbergGermany
| | - Daniel J. Lenihan
- Cardio‐Oncology Center of Excellence, Cardiovascular DivisionWashington University in St. LouisSt. LouisMOUSA
| | - Christoph Maack
- Comprehensive Heart Failure CenterUniversity Clinic WürzburgWürzburgGermany
| | - Javid J. Moslehi
- Division of Cardiovascular Medicine and OncologyCardio‐Oncology Program, Vanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTNUSA
| | - Oliver J. Müller
- Department of Internal Medicine IIIUniversity of KielKielGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHamburg/Kiel/LübeckGermany
| | - Patrycja Nowak‐Sliwinska
- School of Pharmaceutical SciencesUniversity of Geneva, Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
- Translational Research Center in OncohaematologyGenevaSwitzerland
| | | | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, and Centre for Heart DiseasesUniversity HospitalWroclawPoland
| | - Radek Pudil
- 1st Department Medicine‐CardioangiologyUniversity Hospital and Medical FacultyHradec KraloveCzech Republic
| | - Peter P. Rainer
- Medical University of GrazUniversity Heart Center – Division of CardiologyGrazAustria
| | - Frank Ruschitzka
- Department of CardiologyUniversity Hospital Zurich, University Heart CenterZurichSwitzerland
| | - Douglas Sawyer
- Center for Molecular Medicine, Maine Medical Center Research InstituteMaine Medical CenterScarboroughMEUSA
| | - Petar M. Seferovic
- University of Belgrade Faculty of Medicine, Serbian Academy of Sciences and ArtsBelgradeSerbia
| | - Thomas Suter
- Swiss Cardiovascular CentreBern UniversityBernSwitzerland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical SchoolHannoverGermany
| | - Peter van der Meer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Linda W. Van Laake
- Division Heart and Lungs and Regenerative Medicine CentreUniversity Medical Centre Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Heart CenterUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
- Department of Cardiovascular SciencesCentre for Molecular and Vascular Biology, KU LeuvenLeuvenBelgium
| | - Alexander R. Lyon
- Cardio‐Oncology Service, Royal Brompton Hospital, and National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Johannes Backs
- Institute of Experimental CardiologyHeidelberg University HospitalHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHeidelberg/MannheimGermany
| |
Collapse
|
13
|
Betancourt A, Busquets S, Ponce M, Toledo M, Guàrdia‐Olmos J, Peró‐Cebollero M, López‐Soriano FJ, Argilés JM. The animal cachexia score (ACASCO). Animal Model Exp Med 2019; 2:201-209. [PMID: 31773096 PMCID: PMC6762046 DOI: 10.1002/ame2.12082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND None of the published studies involving cancer cachexia experimental models have included a measure of the severity of the syndrome like the scoring system previously developed for human subjects. The aim of the present investigation was to define and validate a cachexia score usable in both rat and mouse tumor models. METHODS In order to achieve this goal, we included in the study one rat model (Yoshida AH-130ascites hepatoma) and two mouse models (Lewis lung carcinoma and Colon26 carcinoma). The Animal cachexia score (ACASCO) includes five components: (a) body and muscle weight loss, (b) inflammation and metabolic disturbances, (c) physical performance, (d) anorexia, and (e) quality of life measured using discomfort symptoms and behavioral tests. RESULTS Using the ACASCO values, three cut-off values were estimated by applying hierarchical cluster analysis. Four groups were originally described, one exactly below the observed mean, a second exactly over the mean, and two other groups adjusted to every cue (inferior and superior). The three cut-off values were estimated through maximization of the classification function. This was accomplished by using a similarity matrix based on the metric properties of the variables and assuming multinormal distribution. The results show that the four groups were: no cachexia, mild cachexia, moderate cachexia and advanced cachexia. CONCLUSIONS The results obtained allow us to conclude that the score could be very useful as an endpoint in pre-clinical studies involving therapeutic strategies for cancer cachexia. The potential usefulness of ACASCO relates to the primary endpoint in pre-clinical cancer cachexia drug evaluations.
Collapse
Affiliation(s)
- Angelica Betancourt
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Marta Ponce
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Joan Guàrdia‐Olmos
- Advanced Statistical Data Analysis Applied to Psychology, Departament de Metodologia de les Ciències del Comportament, Facultat de PsicologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de recerca en CervellCognició i Conducta (IR3C)BarcelonaSpain
| | - Maribel Peró‐Cebollero
- Advanced Statistical Data Analysis Applied to Psychology, Departament de Metodologia de les Ciències del Comportament, Facultat de PsicologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de recerca en CervellCognició i Conducta (IR3C)BarcelonaSpain
| | - Francisco J. López‐Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
14
|
Busquets S, Pérez-Peiró M, Salazar-Degracia A, Argilés JM, Serpe R, Rojano-Toimil A, López-Soriano FJ, Barreiro E. Differential structural features in soleus and gastrocnemius of carnitine-treated cancer cachectic rats. J Cell Physiol 2019; 235:526-537. [PMID: 31241186 DOI: 10.1002/jcp.28992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
Abstract
Muscle wasting is associated with chronic diseases and cancer. Elucidation of the biological mechanism involved in the process of muscle mass loss and cachexia may help identify therapeutic targets. We hypothesized that l-carnitine treatment may differentially revert muscle fiber atrophy and other structural alterations in slow- and fast-twitch limb muscles of rats bearing the Yoshida ascites hepatoma. In soleus and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally) with and without treatment with l-carnitine (1 g/kg body weight for 7 days, intragastric), food intake, body and muscle weights, fiber typing and morphometry, morphological features, redox balance, autophagy and proteolytic, and signaling markers were explored. Levels of carnitine palmitoyl transferase were also measured in all the study muscles. l-Carnitine treatment ameliorated the atrophy of both slow- and fast-twitch fibers (gastrocnemius particularly), muscle structural alterations (both muscles), and attenuated oxidative stress, proteolytic and signaling markers (gastrocnemius). Despite that carnitine palmitoyl transferase-1 levels increased in both muscle types in a similar fashion, l-carnitine ameliorated muscle atrophy and proteolysis in a muscle-specific manner in cancer-induced cachexia. These data reveal the need to study muscles of different fiber type composition and function to better understand whereby l-carnitine exerts its beneficial effects on the myofibers in muscle wasting processes. These findings also have potential clinical implications, since combinations of various exercise and muscle training modalities with l-carnitine should be specifically targeted for the muscle groups to be trained.
Collapse
Affiliation(s)
- Sílvia Busquets
- Departament de Bioquímica i Biomedicina Molecular, Cancer Research Group, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Maria Pérez-Peiró
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Josep M Argilés
- Departament de Bioquímica i Biomedicina Molecular, Cancer Research Group, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Roberto Serpe
- Department of Medical Sciences and Public Health "M. Aresu,", University of Cagliari, Cagliari, Italy
| | - Alba Rojano-Toimil
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Francisco J López-Soriano
- Departament de Bioquímica i Biomedicina Molecular, Cancer Research Group, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
15
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Therapeutic strategies against cancer cachexia. Eur J Transl Myol 2019; 29:7960. [PMID: 31019661 PMCID: PMC6460215 DOI: 10.4081/ejtm.2019.7960] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia has two main components: anorexia and metabolic alterations. The main changes associated with the development of this multi-organic syndrome are glucose intolerance, fat depletion and muscle protein hypercatabolism. The aim of this paper is to review the more recent therapeutic approaches designed to counteract the wasting suffered by the cancer patient with cachexia. Among the most promising approaches we can include the use of ghrelin agonists, beta-blockers, beta-adrenergic agonists, androgen receptor agonists and anti-myostatin peptides. The multi-targeted approach seems essential in these treatments, which should include the combination of both nutritional support, drugs and a suitable program of physical exercise, in order to ameliorate both anorexia and the metabolic changes associated with cachexia. In addition, another very important and crucial aspect to be taken into consideration in the design of clinical trials for the treatment of cancer cachexia is to staging cancer patients in relation with the degree of cachexia, in order to start as early as possible this triple approach in the course of the disease, even before the weight loss can be detected.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| | - Francisco Javier López-Soriano
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| | | | - Sílvia Busquets
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| |
Collapse
|
16
|
Suzuki T, Palus S, Springer J. Skeletal muscle wasting in chronic heart failure. ESC Heart Fail 2018; 5:1099-1107. [PMID: 30548178 PMCID: PMC6300810 DOI: 10.1002/ehf2.12387] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Patients suffering from chronic heart failure (CHF) show an increased prevalence (~20% in elderly CHF patients) of loss of muscle mass and muscle function (i.e. sarcopenia) compared with healthy elderly people. Sarcopenia, which can also occur in obese patients, is considered a strong predictor of frailty, disability, and mortality in older persons and is present in 5–13% of elderly persons aged 60–70 years and up to 50% of all octogenarians. In a CHF study, sarcopenia was associated with lower strength, reduced peak oxygen consumption (peak VO2, 1173 ± 433 vs. 1622 ± 456 mL/min), and lower exercise time (7.7 ± 3.8 vs. 10.22 ± 3.0 min, both P < 0.001). Unfortunately, there are only very limited therapy options. Currently, the main intervention remains resistance exercise. Specialized nutritional support may aid the effects of resistance training. Testosterone has significant positive effects on muscle mass and function, and low endogenous testosterone has been described as an independent risk factor in CHF in a study with 618 men (hazard ratio 0.929, P = 0.042). However, the use of testosterone is controversial because of possible side effects. Selective androgen receptor modulators have been developed to overcome these side effects but are not yet available on the market. Further investigational drugs include growth hormone, insulin‐like growth factor 1, and several compounds that target the myostatin pathway. The continuing development of new treatment strategies and compounds for sarcopenia, muscle wasting regardless of CHF, and cardiac cachexia makes this a stimulating research area.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sandra Palus
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jochen Springer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
17
|
Springer J, Springer JI, Anker SD. Muscle wasting and sarcopenia in heart failure and beyond: update 2017. ESC Heart Fail 2018; 4:492-498. [PMID: 29154428 PMCID: PMC5695190 DOI: 10.1002/ehf2.12237] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF‐1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one.
Collapse
Affiliation(s)
- Jochen Springer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Joshua-I Springer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Stefan D Anker
- Division of Cardiology and Metabolism-Heart Failure, Cachexia and Sarcopenia, Department of Cardiology (CVK); and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Cancer cachexia: Diagnosis, assessment, and treatment. Crit Rev Oncol Hematol 2018; 127:91-104. [PMID: 29891116 DOI: 10.1016/j.critrevonc.2018.05.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 04/16/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer cachexia is a multi-factorial syndrome, which negatively affects quality of life, responsiveness to chemotherapy, and survival in advanced cancer patients. Our understanding of cachexia has grown greatly in recent years and the roles of many tumor-derived and host-derived compounds have been elucidated as mediators of cancer cachexia. However, cancer cachexia remains an unmet medical need and attempts towards a standard treatment guideline have been unsuccessful. This review covers the diagnosis, assessment, and treatment of cancer cachexia; the elements impeding the formulation of a standard management guideline; and future directions of research for the improvement and standardization of current treatment procedures.
Collapse
|
19
|
Salazar-Degracia A, Busquets S, Argilés JM, López-Soriano FJ, Barreiro E. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats. PeerJ 2017; 5:e4109. [PMID: 29255650 PMCID: PMC5732544 DOI: 10.7717/peerj.4109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally) with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection), redox balance (protein oxidation and nitration and antioxidants) and muscle proteins (1-dimensional immunoblots), carbonylated proteins (2-dimensional immunoblots), inflammatory cells (immunohistochemistry), and mitochondrial respiratory chain (MRC) complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV). Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Health and Experimental Sciences Department (CEXS), IMIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Health and Experimental Sciences Department (CEXS), IMIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
20
|
von Haehling S, Ebner N, Anker SD. Oodles of opportunities: the Journal of Cachexia, Sarcopenia and Muscle in 2017. J Cachexia Sarcopenia Muscle 2017; 8:675-680. [PMID: 29076661 PMCID: PMC5659063 DOI: 10.1002/jcsm.12247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
| | - Nicole Ebner
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
| | - Stefan D. Anker
- Division of Cardiology and Metabolism—Heart Failure, Cachexia & Sarcopenia, Department of Cardiology (CVK); and Berlin‐Brandenburg Center for Regenerative Therapies (BCRT); Deutsches Zentrum für Herz‐Kreislauf‐Forschung (DZHK) BerlinCharité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
21
|
Novel targeted therapies for cancer cachexia. Biochem J 2017; 474:2663-2678. [PMID: 28751550 DOI: 10.1042/bcj20170032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023]
Abstract
Anorexia and metabolic alterations are the main components of the cachectic syndrome. Glucose intolerance, fat depletion, muscle protein catabolism and other alterations are involved in the development of cancer cachexia, a multi-organ syndrome. Nutritional approach strategies are not satisfactory in reversing the cachectic syndrome. The aim of the present review is to deal with the recent therapeutic targeted approaches that have been designed to fight and counteract wasting in cancer patients. Indeed, some promising targeted therapeutic approaches include ghrelin agonists, selective androgen receptor agonists, β-blockers and antimyostatin peptides. However, a multi-targeted approach seems absolutely essential to treat patients affected by cancer cachexia. This approach should not only involve combinations of drugs but also nutrition and an adequate program of physical exercise, factors that may lead to a synergy, essential to overcome the syndrome. This may efficiently reverse the metabolic changes described above and, at the same time, ameliorate the anorexia. Defining this therapeutic combination of drugs/nutrients/exercise is an exciting project that will stimulate many scientific efforts. Other aspects that will, no doubt, be very important for successful treatment of cancer wasting will be an optimized design of future clinical trials, together with a protocol for staging cancer patients in relation to their degree of cachexia. This will permit that nutritional/metabolic/pharmacological support can be started early in the course of the disease, before severe weight loss occurs. Indeed, timing is crucial and has to be taken very seriously when applying the therapeutic approach.
Collapse
|
22
|
Barkhudaryan A, Scherbakov N, Springer J, Doehner W. Cardiac muscle wasting in individuals with cancer cachexia. ESC Heart Fail 2017; 4:458-467. [PMID: 29154433 PMCID: PMC5695173 DOI: 10.1002/ehf2.12184] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/28/2017] [Accepted: 05/01/2017] [Indexed: 12/25/2022] Open
Abstract
Aims Cachexia is a severe complication of cancer that adversely affects the course of the disease and is associated with high rates of mortality. Patients with cancer manifest symptoms, such as fatigue, shortness of breath, and impaired exercise tolerance, which are clinical signs of chronic heart failure. The aim of this study was to evaluate cardiac muscle wasting in cancer individuals. Methods and results We retrospectively analysed 177 individuals who died of cancer, including 58 lung, 60 pancreatic, and 59 gastrointestinal (GI) cancers, and 42 cancer‐free controls who died of other, non‐cardiovascular reasons. Cancer cachexia (CC) was defined based on clinical and/or pathological diagnosis, body mass index (BMI) <20.0 kg/m2 and/or oedema‐free body weight loss of 5.0% during the previous year or less. The pathology reports were analysed for BMI, heart weight (HW), and left and right ventricular wall thicknesses (LVWT and RVWT, respectively). The analysis of clinical data included recording of biochemical parameters and medication data of study patients. CC was detected in 54 (30.5%) subjects. Individuals with CC had a significantly lower HW than non‐cachectic subjects (363.1 ± 86.2 vs. 447.0 ± 128.9 g, P < 0.001) and control group (412.9 ± 75.8 g, P < 0.05). BMI correlated with HW in cases with GI cancer (r = 0.44, P < 0.001), lung cancer (r = 0.53, P < 0.0001), and pancreatic cancer (r = 0.39, P < 0.01). Conclusions Body weight loss in individuals with lung, pancreatic, and GI cancers is accompanied by a decrease in HW. In patients with CC who receive cancer treatment, screening for cardiac muscle wasting may have clinical importance.
Collapse
Affiliation(s)
- Anush Barkhudaryan
- Clinic of General and Invasive Cardiology, University Clinical Hospital No. 1, Yerevan, Armenia
| | - Nadja Scherbakov
- Center for Stroke Research Berlin, Charite Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Jochen Springer
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen (UMG), Göttingen, Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin, Charite Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Department of Cardiology and Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow, Charite Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Ishida J, Saitoh M, Doehner W, von Haehling S, Anker M, Anker SD, Springer J. Animal models of cachexia and sarcopenia in chronic illness: Cardiac function, body composition changes and therapeutic results. Int J Cardiol 2017; 238:12-18. [DOI: 10.1016/j.ijcard.2017.03.154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
|
24
|
Aversa Z, Costelli P, Muscaritoli M. Cancer-induced muscle wasting: latest findings in prevention and treatment. Ther Adv Med Oncol 2017; 9:369-382. [PMID: 28529552 PMCID: PMC5424865 DOI: 10.1177/1758834017698643] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a severe and disabling clinical condition that frequently accompanies the development of many types of cancer. Muscle wasting is the hallmark of cancer cachexia and is associated with serious clinical consequences such as physical impairment, poor quality of life, reduced tolerance to treatments and shorter survival. Cancer cachexia may evolve through different stages of clinical relevance, namely pre-cachexia, cachexia and refractory cachexia. Given its detrimental clinical consequences, it appears mandatory to prevent and/or delay the progression of cancer cachexia to its refractory stage by implementing the early recognition and treatment of the nutritional and metabolic alterations occurring during cancer. Research on the molecular mechanisms underlying muscle wasting during cancer cachexia has expanded in the last few years, allowing the identification of several potential therapeutic targets and the development of many promising drugs. Several of these agents have already reached the clinical evaluation, but it is becoming increasingly evident that a single therapy may not be completely successful in the treatment of cancer-related muscle wasting, given its multifactorial and complex pathogenesis. This suggests that early and structured multimodal interventions (including targeted nutritional supplementation, physical exercise and pharmacological interventions) are necessary to prevent and/or treat the devastating consequences of this cancer comorbidity, and future research should focus on this approach.
Collapse
Affiliation(s)
- Zaira Aversa
- Department of Clinical Medicine, Sapienza University of Rome, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Maurizio Muscaritoli
- Department of Clinical Medicine, Sapienza, University of Rome, Viale dell’Università 37, 00185 Rome, Italy
| |
Collapse
|
25
|
Springer J, Anker SD. Publication trends in cachexia and sarcopenia in elderly heart failure patients. Wien Klin Wochenschr 2016; 128:446-454. [PMID: 27885423 DOI: 10.1007/s00508-016-1126-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022]
Abstract
The loss of skeletal mass - sarcopenia and cachexia - is considered to be a major contributor to morbidity and mortality in chronic heart failure (CHF). Unfortunately, sarcopenia is generally considered to be a geriatric syndrome, but not necessarily seen as a comorbidity in CHF, even though it has a wide range of adverse health outcomes. While there were 15,574 publication with the title word "heart failure" in PubMed in the 5‑year period from 1 June 2011 to 31 May 2016, only 22 or 71 publications were found with the search combination "sarcopenia" or "cachexia" (title word) and "heart failure" (all fields), respectively. This shows very clearly that loss of muscle quality and function due to heart failure is still an underappreciated problem in the medical field.
Collapse
Affiliation(s)
- Jochen Springer
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Stefan D Anker
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
26
|
von Haehling S, Ebner N, Anker SD. Moving upwards - the journal of cachexia, sarcopenia and muscle in 2016. J Cachexia Sarcopenia Muscle 2016; 7:391-5. [PMID: 27625918 PMCID: PMC5011813 DOI: 10.1002/jcsm.12142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stephan von Haehling
- Innovative Clinical Trial, Department of Cardiology and Pneumology University of Göttingen Medical School Göttingen Germany
| | - Nicole Ebner
- Innovative Clinical Trial, Department of Cardiology and Pneumology University of Göttingen Medical School Göttingen Germany
| | - Stefan D Anker
- Innovative Clinical Trial, Department of Cardiology and Pneumology University of Göttingen Medical School Göttingen Germany
| |
Collapse
|
27
|
Loncar G, Springer J, Anker M, Doehner W, Lainscak M. Cardiac cachexia: hic et nunc. J Cachexia Sarcopenia Muscle 2016; 7:246-60. [PMID: 27386168 PMCID: PMC4929818 DOI: 10.1002/jcsm.12118] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiac cachexia (CC) is the clinical entity at the end of the chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely, the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. A better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia, and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
Collapse
Affiliation(s)
- Goran Loncar
- Department of Cardiology Clinical Hospital Zvezdara Belgrade Serbia; School of Medicine University of Belgrade Belgrade Serbia
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Center Göttingen (UMG) Göttingen Germany
| | - Markus Anker
- Department of Cardiology Charité - Universitätsmedizin Berlin Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charité Universitätsmedizin Berlin Germany
| | - Mitja Lainscak
- Department of Cardiology and Department of Research and Education General Hospital Celje Celje Slovenia; Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| |
Collapse
|
28
|
Zimmers TA, Fishel ML, Bonetto A. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol 2016; 54:28-41. [PMID: 26860754 PMCID: PMC4867234 DOI: 10.1016/j.semcdb.2016.02.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients.
Collapse
Affiliation(s)
- Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Melissa L Fishel
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
29
|
Using AAV vectors expressing the β2-adrenoceptor or associated Gα proteins to modulate skeletal muscle mass and muscle fibre size. Sci Rep 2016; 6:23042. [PMID: 26972746 PMCID: PMC4789796 DOI: 10.1038/srep23042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/25/2016] [Indexed: 01/06/2023] Open
Abstract
Anabolic β2-adrenoceptor (β2-AR) agonists have been proposed as therapeutics for treating muscle wasting but concerns regarding possible off-target effects have hampered their use. We investigated whether β2-AR-mediated signalling could be modulated in skeletal muscle via gene delivery to the target tissue, thereby avoiding the risks of β2-AR agonists. In mice, intramuscular administration of a recombinant adeno-associated virus-based vector (rAAV vector) expressing the β2-AR increased muscle mass by >20% within 4 weeks. This hypertrophic response was comparable to that of 4 weeks’ treatment with the β2-AR agonist formoterol, and was not ablated by mTOR inhibition. Increasing expression of inhibitory (Gαi2) and stimulatory (GαsL) G-protein subunits produced minor atrophic and hypertrophic changes in muscle mass, respectively. Furthermore, Gαi2 over-expression prevented AAV:β2-AR mediated hypertrophy. Introduction of the non-muscle Gαs isoform, GαsXL elicited hypertrophy comparable to that achieved by AAV:β2-AR. Moreover, GαsXL gene delivery was found to be capable of inducing hypertrophy in the muscles of mice lacking functional β1- and β2-ARs. These findings demonstrate that gene therapy-based interventions targeting the β2-AR pathway can promote skeletal muscle hypertrophy independent of ligand administration, and highlight novel methods for potentially modulating muscle mass in settings of disease.
Collapse
|
30
|
Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment. Int J Cardiol 2016; 202:766-72. [DOI: 10.1016/j.ijcard.2015.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/04/2015] [Indexed: 02/07/2023]
|
31
|
Murphy KT. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ Physiol 2015; 310:H466-77. [PMID: 26718971 DOI: 10.1152/ajpheart.00720.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/29/2015] [Indexed: 02/08/2023]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. In addition to a loss of skeletal muscle mass and function, many patients with cancer cachexia also experience cardiac atrophy, remodeling, and dysfunction, which in the field of cancer cachexia is described as cardiac cachexia. The cardiac alterations may be due to underlying heart disease, the cancer itself, or problems initiated by the cancer treatment and, unfortunately, remains largely underappreciated by clinicians and basic scientists. Despite recent major advances in the treatment of cancer, little progress has been made in the treatment of cardiac cachexia in cancer, and much of this is due to lack of information regarding the mechanisms. This review focuses on the cardiac atrophy associated with cancer cachexia, describing some of the known mechanisms and discussing the current and future therapeutic strategies to treat this condition. Above all else, improved awareness of the condition and an increased focus on identification of mechanisms and therapeutic targets will facilitate the eventual development of an effective treatment for cardiac atrophy in cancer cachexia.
Collapse
Affiliation(s)
- Kate T Murphy
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Toledo M, Busquets S, Penna F, Zhou X, Marmonti E, Betancourt A, Massa D, López-Soriano FJ, Han H, Argilés JM. Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist. Int J Cancer 2015; 138:2021-9. [DOI: 10.1002/ijc.29930] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona Spain
| | - Fabio Penna
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Xiaolan Zhou
- Departments of Metabolic Disorders and Protein Science; Amgen Research, Thousand Oaks; CA
| | - Enrica Marmonti
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Angelica Betancourt
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - David Massa
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona Spain
| | - H.Q. Han
- Departments of Metabolic Disorders and Protein Science; Amgen Research, Thousand Oaks; CA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona Spain
| |
Collapse
|
33
|
Drescher C, Konishi M, Ebner N, Springer J. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle 2015; 6:303-11. [PMID: 26676067 PMCID: PMC4670737 DOI: 10.1002/jcsm.12082] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 01/02/2023] Open
Abstract
Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies, and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartate-resistant acid phosphatase 5a, and novel substances like epigallocatechin-3-gallate. In summary, the progress to combat muscle wasting is in full swing, and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon support by improved and more helpful strategies.
Collapse
Affiliation(s)
- Cathleen Drescher
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Masaaki Konishi
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Nicole Ebner
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| |
Collapse
|
34
|
Anker SD, Coats AJS, Morley JE. Evidence for partial pharmaceutical reversal of the cancer anorexia-cachexia syndrome: the case of anamorelin. J Cachexia Sarcopenia Muscle 2015; 6:275-7. [PMID: 26675382 PMCID: PMC4670734 DOI: 10.1002/jcsm.12063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 01/04/2023] Open
Abstract
A major component of the cancer anorexia-cachexia syndrome is a decline in food intake. Up until now none of the drugs that improve appetite also improve skeletal muscle. Recent studies have suggested that the oral ghrelin-analog, anamorelin, increased food intake and muscle mass. Unfortunately, it does not increase muscle power. Its regulatory future is uncertain, although it has important clinical effects.
Collapse
Affiliation(s)
- Stefan D Anker
- Division of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Andrew J S Coats
- Monash University Melbourne, Australia ; University of Warwick Coventry, UK
| | - John E Morley
- Divisions of Geriatric Medicine and Endocrinology, Saint Louis University School of Medicine St Louis, MO, USA
| |
Collapse
|
35
|
von Haehling S, Springer J. Treatment of Muscle Wasting: An Overview of Promising Treatment Targets. J Am Med Dir Assoc 2015; 16:1014-9. [DOI: 10.1016/j.jamda.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
|
36
|
Cardiac cachexia: hic et nunc: "hic et nunc" - here and now. Int J Cardiol 2015; 201:e1-12. [PMID: 26545926 DOI: 10.1016/j.ijcard.2015.10.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Cardiac cachexia (CC) is the clinical entity at the end of chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. Better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick-up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
Collapse
|
37
|
Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res 2015; 99:86-100. [DOI: 10.1016/j.phrs.2015.05.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 05/24/2015] [Indexed: 12/11/2022]
|
38
|
Abstract
Sarcopenia (muscle wasting) and cachexia share some pathophysiological aspects. Sarcopenia affects approximately 20 %, cachexia <10 % of ambulatory patients with heart failure (HF). Whilst sarcopenia means loss of skeletal muscle mass and strength that predominantly affects postural rather than non-postural muscles, cachexia means loss of muscle and fat tissue that leads to weight loss. The wasting continuum in HF implies that skeletal muscle is lost earlier than fat tissue and may lead from sarcopenia to cachexia. Both tissues require conservation, and therapies that stop the wasting process have tremendous therapeutic appeal. The present paper reviews the pathophysiology of muscle and fat wasting in HF and discusses potential treatments, including exercise training, appetite stimulants, essential amino acids, growth hormone, testosterone, electrical muscle stimulation, ghrelin and its analogues, ghrelin receptor agonists and myostatin antibodies.
Collapse
|
39
|
Abstract
[This corrects the article on p. 253 in vol. 5, PMID: 25425503.][This corrects the article on p. 171 in vol. 5, PMID: 25192875.][This corrects the article on p. 315 in vol. 5, PMID: 25167857.][This corrects the article on p. 45 in vol. 6.].
Collapse
|
40
|
Vitorino R, Moreira-Gonçalves D, Ferreira R. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management. Curr Opin Clin Nutr Metab Care 2015; 18:226-33. [PMID: 25783794 DOI: 10.1097/mco.0000000000000161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Cancer cachexia represents a critical problem in clinical oncology due to its negative impact on patients' quality of life, therapeutic tolerance and survival. This paraneoplasic condition is characterized by significant weight loss mainly from skeletal muscle wasting. Understanding the molecular mechanisms underlying cancer cachexia is urgent in order to develop and apply efficient therapeutic strategies. RECENT FINDINGS Mitochondrial dysfunction is an early event in cancer-induced muscle wasting. Decreased ability for ATP synthesis, impaired mitochondrial biogenesis, increased oxidative stress, impairment of protein quality control systems, increased susceptibility to mitophagy and to apoptosis were all shown to mediate contractile dysfunction and wasting in cancer cachexia. Anti-inflammatory therapies as well as exercise training seem to counteract muscle mass loss in part by improving mitochondrial functionality. SUMMARY Given its central role in muscle wasting, mitochondrial plasticity should be viewed as a key therapeutic target for the preservation of muscle mass in cancer cachexia. Few studies have addressed the mitochondrial events modulated by cancer cachexia and contradictory data were reported. Scarcer studies have focused on the mitochondrial adaptation to anticancer cachexia strategies.
Collapse
Affiliation(s)
- Rui Vitorino
- aQOPNA, Department of Chemistry bInstitute for Research in Biomedicine - iBiMED, Health Sciences Program, University of Aveiro, Aveiro cCIAFEL, Faculty of Sports dDepartment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
41
|
Highlights from the 7th Cachexia Conference: muscle wasting pathophysiological detection and novel treatment strategies. J Cachexia Sarcopenia Muscle 2014; 5:27-34. [PMID: 24595460 PMCID: PMC3953317 DOI: 10.1007/s13539-014-0136-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
This article highlights preclinical and clinical studies in the field of wasting disorders that were presented at the 7th Cachexia Conference held in Kobe, Japan, in December 2013. This year, the main topics were the development of new methods and new biomarkers in the field of cachexia and wasting disorders with particular focus on inflammatory pathways, growth differentiation factor-15, myostatin, the ubiquitin proteasome-dependent pathway, valosin and the regulation of ubiquitin-specific protease 19 that is involved in the differentiation of myogenin and myosin heavy chain. This article presents highlights from the development of drugs that have shown potential in the treatment of wasting disorders, particularly the ghrelin receptor agonist anamorelin, the myostatin antagonist REGN1033, the selective androgen receptor modulators enobosarm and TEI-E0001, and the anabolic catabolic transforming agent espindolol. In addition, novel data on the prevalence and detection methods of muscle wasting/sarcopenia are presented, including the D3-creatine dilution method and several new biomarkers.
Collapse
|