1
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Nakanishi A, Toyama S, Onozato D, Watanabe C, Hashita T, Iwao T, Matsunaga T. Effects of human induced pluripotent stem cell-derived intestinal organoids on colitis-model mice. Regen Ther 2022; 21:351-361. [PMID: 36161099 PMCID: PMC9471335 DOI: 10.1016/j.reth.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory bowel disease characterized by repeated remissions and relapses. Immunosuppressive drugs have facilitated the induction and maintenance of remission in many patients with UC. However, immunosuppressive drugs cannot directly repair impaired intestinal mucosa and are insufficient for preventing relapse. Therefore, new treatment approaches to repair the damaged epithelium in UC have been attempted through the transplantation of intestinal organoids, which can be differentiated into mucosa by embedding in Matrigel, generated from patient-derived intestinal stem cells. The method, however, poses the challenge of yielding sufficient cells for UC therapy, and patient-derived cells might already have acquired pathological changes. In contrast, human induced pluripotent stem (iPS) cells generated from healthy individuals are infinitely proliferated and can be differentiated into target cells. Recently developed human iPS cell-derived intestinal organoids (HIOs) aim to generate organoids that closely resemble the adult intestine. However, no study till date has reported HIOs injected into in vivo inflammatory models, and it remains unclear whether HIOs with cells that closely resemble the adult intestine or with intestinal stem cells retain the better ability to repair tissue in colitis. Methods We generated two types of HIOs via suspension culture with and without small-molecule compounds: HIOs that include predominantly more intestinal stem cells [HIO (A)] and those that include predominantly more intestinal epithelial and secretory cells [HIO (B)]. We examined whether the generated HIOs engrafted in vivo and compared their ability to accelerate recovery of the damaged tissue. Results Findings showed that the HIOs expressed intestinal-specific markers such as caudal-type homeobox 2 (CDX2) and villin, and HIOs engrafted under the kidney capsules of mice. We then injected HIOs into colitis-model mice and found that the weight and clinical score of the mice injected with HIO (A) recovered earlier than that of the mice in the sham group. Further, the production of mucus and the expression of cell proliferation markers and tight junction proteins in the colon tissues of the HIO (A) group were restored to levels similar to those observed in healthy mice. However, neither HIO (A) nor HIO (B) could be engrafted into the colon. Conclusions Effective cell therapy should directly repair tissue by engraftment at the site of injury. However, the difference in organoid property impacting the rate of tissue repair in transplantation without engraftment observed in the current study should be considered a critical consideration in the development of regenerative medicine using iPS-derived organoids. Human iPS cell-derived intestinal organoids were generated via suspension culture. The effects of two types of intestinal organoids in vivo were compared. Intestinal organoids were engrafted under mouse kidney capsules. Intestinal organoids promoted mucosal healing in acute colitis-model mice. Organoids with a higher gene expression of intestinal stem cell had higher effects.
Collapse
Key Words
- 5-aza, 5-aza-2′-deoxycytidine
- A-83-01, 3-(6-methyl-2-pyridinyl)-N-phenyl-4-(4-quinolinyl)-1H-pyrazole-1-carbothioamide
- CDX2, caudal-type homeobox 2
- CHGA, chromogranin A
- Cell therapy
- DAPI, 4′,6-diamidino-2-phenylindole
- DAPT, N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl-1,1-dime-thylethyl ester-glycine
- DSS, dextran sodium sulfate
- FBS, fetal bovine serum
- HIO, human induced pluripotent stem cell-derived intestinal organoid
- HLA, human leukocyte antigen
- HPRT, hypoxanthine phosphoribosyltransferase
- Human induced pluripotent stem cell
- Inflammatory bowel disease
- Intestinal organoid
- LGR5, leucine-rich repeat-containing G-protein-coupled receptor 5
- MUC2, mucin 2
- NSG, NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ
- OLFM4, olfactomedin 4
- PBS, phosphate-buffered saline
- PD98059, 2-(2-amino-3-methoxyphenyl)4-H-1-benzopyran-4-one
- SCID-Beige, CB17.Cg-PrkdcscidLystbg-J/CrlCrlj
- Suspension culture
- UC, ulcerative colitis
- Ulcerative colitis
- VIL1, villin 1
- Y-27632, (+)-(R)-trans-4-(1-amino-ethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride
- iPS, induced pluripotent stem
- qPCR, quantitative polymerase chain reaction
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Anna Nakanishi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Satoshi Toyama
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Daichi Onozato
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Chihiro Watanabe
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
3
|
Zhou JF, Xiong Y, Kang X, Pan Z, Zhu Q, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Application of stem cells and exosomes in the treatment of intracerebral hemorrhage: an update. Stem Cell Res Ther 2022; 13:281. [PMID: 35765072 PMCID: PMC9241288 DOI: 10.1186/s13287-022-02965-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage is a highly destructive intracranial disease with high mortality and morbidity rates. The main risk factors for cerebral hemorrhage include hypertension, amyloidosis, vasculitis, drug abuse, coagulation dysfunction, and genetic factors. Clinically, surviving patients with intracerebral hemorrhage exhibit different degrees of neurological deficits after discharge. In recent years, with the development of regenerative medicine, an increasing number of researchers have begun to pay attention to stem cell and exosome therapy as a new method for the treatment of intracerebral hemorrhage, owing to their intrinsic potential in neuroprotection and neurorestoration. Many animal studies have shown that stem cells can directly or indirectly participate in the treatment of intracerebral hemorrhage through regeneration, differentiation, or secretion. However, considering the uncertainty of its safety and efficacy, clinical studies are still lacking. This article reviews the treatment of intracerebral hemorrhage using stem cells and exosomes from both preclinical and clinical studies and summarizes the possible mechanisms of stem cell therapy. This review aims to provide a reference for future research and new strategies for clinical treatment.
Collapse
Affiliation(s)
- Jian-Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Xiaodong Kang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Qiangbin Zhu
- Department of Neurosurgery, Hui'an County Hospital of Fujian Province, Quanzhou, Fujian, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, "Attikon" University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany.,Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
4
|
Yang L, Xue S, Du M, Lian F. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. Int J Nanomedicine 2021; 16:3741-3754. [PMID: 34113099 PMCID: PMC8186278 DOI: 10.2147/ijn.s304873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/01/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction The reprogramming of induced cardiomyocytes (iCMs) is of particular significance in regenerative medicine; however, it remains a great challenge to fabricate an efficient and safe gene delivery system to induce reprogramming of iCMs for therapeutic applications in heart injury. Here, we report branched polyethyleneimine (BP) coated nitrogen-enriched carbon dots (BP-NCDs) as highly efficient nanocarriers loaded with microRNAs-combo (BP-NCDs/MC) for cardiac reprogramming. Methods The BP-NCDs nanocarriers were prepared and characterized by several analytical techniques. Results The BP-NCDs nanocarriers showed good microRNAs-combo binding affinity, negligible cytotoxicity, and long-term microRNAs expression. Importantly, BP-NCDs/MC nanocomplexes led to the efficient direct reprogramming of fibroblasts into iCMs without genomic integration and resulting in effective recovery of cardiac function after myocardial infarction (MI). Conclusion This study offers a novel strategy to provide safe and effective microRNAs-delivery nanoplatforms based on carbon dots for promising cardiac regeneration and disease therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
5
|
Ukon Y, Makino T, Kodama J, Tsukazaki H, Tateiwa D, Yoshikawa H, Kaito T. Molecular-Based Treatment Strategies for Osteoporosis: A Literature Review. Int J Mol Sci 2019; 20:E2557. [PMID: 31137666 PMCID: PMC6567245 DOI: 10.3390/ijms20102557] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is an unavoidable public health problem in an aging or aged society. Anti-resorptive agents (calcitonin, estrogen, and selective estrogen-receptor modulators, bisphosphonates, anti-receptor activator of nuclear factor κB ligand antibody along with calcium and vitamin D supplementations) and anabolic agents (parathyroid hormone and related peptide analogs, sclerostin inhibitors) have major roles in current treatment regimens and are used alone or in combination based on the pathological condition. Recent advancements in the molecular understanding of bone metabolism and in bioengineering will open the door to future treatment paradigms for osteoporosis, including antibody agents, stem cells, and gene therapies. This review provides an overview of the molecular mechanisms, clinical evidence, and potential adverse effects of drugs that are currently used or under development for the treatment of osteoporosis to aid clinicians in deciding how to select the best treatment option.
Collapse
Affiliation(s)
- Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Joe Kodama
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tsukazaki
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, Isaji T, Ono S, Liu S, Lee SR, Xu J, Liu J, Taniguchi R, Yastula B, Hsia HC, Qyang Y, Dardik A. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019; 10:87. [PMID: 30867069 PMCID: PMC6416973 DOI: 10.1186/s13287-019-1185-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wound healing is the physiologic response to a disruption in normal skin architecture and requires both spatial and temporal coordination of multiple cell types and cytokines. This complex process is prone to dysregulation secondary to local and systemic factors such as ischemia and diabetes that frequently lead to chronic wounds. Chronic wounds such as diabetic foot ulcers are epidemic with great cost to the healthcare system as they heal poorly and recur frequently, creating an urgent need for new and advanced therapies. Stem cell therapy is emerging as a potential treatment for chronic wounds, and adult-derived stem cells are currently employed in several commercially available products; however, stem cell therapy is limited by the need for invasive harvesting techniques, immunogenicity, and limited cell survival in vivo. Induced pluripotent stem cells (iPSC) are an exciting cell type with enhanced therapeutic and translational potential. iPSC are derived from adult cells by in vitro induction of pluripotency, obviating the ethical dilemmas surrounding the use of embryonic stem cells; they are harvested non-invasively and can be transplanted autologously, reducing immune rejection; and iPSC are the only cell type capable of being differentiated into all of the cell types in healthy skin. This review focuses on the use of iPSC in animal models of wound healing including limb ischemia, as well as their limitations and methods aimed at improving iPSC safety profile in an effort to hasten translation to human studies.
Collapse
Affiliation(s)
- Jolanta Gorecka
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Valentyna Kostiuk
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Ste 773A, New Haven, CT, 06511, USA
| | - Biraja Dash
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, PO Box 208062, New Haven, CT, 06520-8062, USA
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Shin Rong Lee
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Jianbiao Xu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Jia Liu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Bogdan Yastula
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA
| | - Henry C Hsia
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, PO Box 208062, New Haven, CT, 06520-8062, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Ste 773A, New Haven, CT, 06511, USA.,Yale Stem Cell Center, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, USA.,Department of Pathology, Yale University, New Haven, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA.
| |
Collapse
|
7
|
Lee Y, Kim CY, Lee HJ, Kim JG, Han DW, Ko K, Walter J, Chung HM, Schöler HR, Bae YM, Ko K. Two-Step Generation of Oligodendrocyte Progenitor Cells From Mouse Fibroblasts for Spinal Cord Injury. Front Cell Neurosci 2018; 12:198. [PMID: 30090058 PMCID: PMC6070016 DOI: 10.3389/fncel.2018.00198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are attracting attention as the ideal cell therapy for spinal cord injury (SCI). Recently, advanced reprogramming and differentiation techniques have made it possible to generate therapeutic cells for treating SCI. In the present study, we used directly-induced neural stem cells (DNSCs) from fibroblasts to establish OPCs (DN-OPCs) capable of proliferation and confirmed their OPC-specific characteristics. Also, we evaluated the effect of transplanted DN-OPCs on SCI in rats. The DN-OPCs exhibited an OPC-specific phenotype and electrophysiological function and could be differentiated into oligodendrocytes. In the SCI model, transplanted DN-OPCs improved behavior recovery, and showed engraftment into the host spinal cord with expression of myelin basic protein. These results suggest that DN-OPCs could be a new source of potentially useful cells for treating SCI.
Collapse
Affiliation(s)
- Yukyeong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, South Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Hye Jeong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, South Korea
| | - Jae Gon Kim
- Department of Physiology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, South Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - James Walter
- Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Medical Faculty, University of Münster, Münster, Germany
| | - Young Min Bae
- Department of Physiology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, South Korea.,Research Institute of Medical Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
8
|
Capuano R, Spitalieri P, Talarico RV, Catini A, Domakoski AC, Martinelli E, Scioli MG, Orlandi A, Cicconi R, Paolesse R, Novelli G, Di Natale C, Sangiuolo F. Volatile compounds emission from teratogenic human pluripotent stem cells observed during their differentiation in vivo. Sci Rep 2018; 8:11056. [PMID: 30038375 PMCID: PMC6056464 DOI: 10.1038/s41598-018-29212-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023] Open
Abstract
Several investigations point out that the volatile fraction of metabolites, often called volatilome, might signal the difference processes occurring in living beings, both in vitro and in vivo. These studies have been recently applied to stem cells biology, and preliminary results show that the composition of the volatilome of stem cells in vitro changes along the differentiation processes leading from pluripotency to full differentiation. The identification of pluripotent stem cells is of great importance to improve safety in regenerative medicine avoiding the formation of teratomas. In this paper, we applied gas chromatography and gas sensor array to the study of the volatilome released by mice transplanted with human induced pluripotent stem cells (hiPSCs) or embryoid bodies (EBs) derived from hiPSCs at 5 days and spontaneously differentiated cells at 27 day. Gas chromatography analysis finds that, in mice transplanted with hiPSCs, the abundance of 13 volatile compounds increases four weeks after the implant and immediately before the formation of malignant teratomas (grade 3) become observable. The same behaviour is also followed by the signals of the gas sensors. Besides this event, the gas-chromatograms and the sensors signals do not show any appreciable variation related neither among the groups of transplanted mice nor respect to a placebo population. This is the first in vivo observation of the change of volatile metabolites released by human induced pluripotent stem cells and hiPSCs-derived cells during the differentiation process. These results shed further light on the differentiation mechanisms of stem cells and suggest possible applications for diagnostic purposes for an early detection of tumor relapse after surgery.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Rosa Valentina Talarico
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Ana Carolina Domakoski
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Rosella Cicconi
- Centro Servizi Interdipartimentale STA, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy.
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
9
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
10
|
Lee JH, Kwon HK, Shin HJ, Nam GH, Kim JH, Choi S. Quasi-Stem Cells Derived from Human Somatic Cells by Chemically Modified Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8417-8425. [PMID: 29286621 DOI: 10.1021/acsami.7b12914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface modification of micro- and nanotopography was employed to alter the surface properties of scaffolds for controlling cell attachment, proliferation, and differentiation. This study reports a method for generating multinucleated colonies as evidenced by spherical colony formation through nanotopography-induced expression of reprogramming factors in human dermal fibroblasts. Colony formation was achieved by subjecting the cells to specific environments such as culturing with single-walled carbon nanotubes and poly-l-lysine (PLL-SWCNTs). We obtained encouraging results showing that PLL-SWCNT treatment transformed fibroblast cells, and the transformed cells expressed the pluripotency-associated factors OCT4, NANOG, and SOX2 in addition to TRA-1-60 and SSEA-4, which are characteristic stem cell markers. Downregulation of lamin A/C, HDAC1, HDAC6, Bcl2, cytochrome c, p-FAK, p-ERK, and p-JNK and upregulation of H3K4me3 and p-p38 were confirmed in the generated colonies, indicating reprogramming of cells. This protocol increases the possibility of successfully reprogramming somatic cells into induced pluripotent stem cells (iPSCs), thereby overcoming the difficulties in iPSC generation such as genetic mutations, carcinogenesis, and undetermined risk factors.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Molecular Science and Technology , Ajou University , Suwon 443-749 , Republic of Korea
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
- Predictive Model Research Center , Korea Institute of Toxicology , Daejeon 34114 , Republic of Korea
| | - Hyuck-Kwon Kwon
- Department of Molecular Science and Technology , Ajou University , Suwon 443-749 , Republic of Korea
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology , Ajou University , Suwon 443-749 , Republic of Korea
| | - Gwang-Hyeon Nam
- Department of Molecular Science and Technology , Ajou University , Suwon 443-749 , Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology , Ajou University , Suwon 443-749 , Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology , Ajou University , Suwon 443-749 , Republic of Korea
| |
Collapse
|
11
|
Ferreira AF, Calin GA, Picanço-Castro V, Kashima S, Covas DT, de Castro FA. Hematopoietic stem cells from induced pluripotent stem cells - considering the role of microRNA as a cell differentiation regulator. J Cell Sci 2018; 131:131/4/jcs203018. [PMID: 29467236 DOI: 10.1242/jcs.203018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although hematopoietic stem cell (HSC) therapy for hematological diseases can lead to a good outcome from the clinical point of view, the limited number of ideal donors, the comorbidity of patients and the increasing number of elderly patients may limit the application of this therapy. HSCs can be generated from induced pluripotent stem cells (iPSCs), which requires the understanding of the bone marrow and liver niches components and function in vivo iPSCs have been extensively applied in several studies involving disease models, drug screening and cellular replacement therapies. However, the somatic reprogramming by transcription factors is a low-efficiency process. Moreover, the reprogramming process is also regulated by microRNAs (miRNAs), which modulate the expression of the transcription factors OCT-4 (also known as POU5F1), SOX-2, KLF-4 and MYC, leading somatic cells to a pluripotent state. In this Review, we present an overview of the challenges of cell reprogramming protocols with regard to HSC generation from iPSCs, and highlight the potential role of miRNAs in cell reprogramming and in the differentiation of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Aline F Ferreira
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Virgínia Picanço-Castro
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Simone Kashima
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Dimas T Covas
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil.,Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fabiola A de Castro
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
12
|
Osawa Y, Miyamoto T, Ohno S, Ohno E. Morphological Analysis of Live Undifferentiated Cells Derived from Induced Pluripotent Stem Cells. Stem Cells Dev 2018; 27:1-9. [PMID: 28978257 DOI: 10.1089/scd.2017.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Induced pluripotent stem (iPS) cells possess pluripotency and self-renewal ability. Therefore, iPS cells are expected to be useful in regenerative medicine. However, iPS cells form malignant immature teratomas after transplantation into animals, even after differentiation induction. It has been suggested that undifferentiated cells expressing Nanog that remain after differentiation induction are responsible for teratoma formation. Various methods of removing these undifferentiated cells have therefore been investigated, but few methods involve morphological approaches, which may induce less cell damage. In addition, for cells derived from iPS cells to be applied in regenerative medicine, they must be alive. However, detailed morphological analysis of live undifferentiated cells has not been performed. For the above reasons, we assessed the morphological features of live undifferentiated cells remaining after differentiation induction as a basic investigation into the clinical application of iPS cells. As a result, live undifferentiated cells remaining after differentiation induction exhibited a round or oval cytoplasm about 12 μm in diameter and a nucleus. They exhibited nucleo-cytoplasmic (N/C) ratio of about 60% and eccentric nuclei, and they possessed partially granule-like structures in the cytoplasm and prominent nucleoli. Although they were similar to iPS cells, they were smaller than live iPS cells. Furthermore, very small cells were present among undifferentiated cells after differentiation induction. These results suggest that the removal of undifferentiated cells may be possible using the morphological features of live iPS cells and undifferentiated cells after differentiation induction. In addition, this study supports safe regenerative medicine using iPS cells.
Collapse
Affiliation(s)
- Yukihiko Osawa
- 1 Graduate School of Health Science Studies, Kyushu University of Health and Welfare , Nobeoka, Japan .,2 Cancer Cell Institute, Kyushu University of Health and Welfare , Nobeoka, Japan
| | - Tomoyuki Miyamoto
- 2 Cancer Cell Institute, Kyushu University of Health and Welfare , Nobeoka, Japan .,3 Department of Medical Life Science, Faculty of Medical Bioscience, Kyushu University of Health and Welfare , Nobeoka, Japan
| | - Setsuyo Ohno
- 1 Graduate School of Health Science Studies, Kyushu University of Health and Welfare , Nobeoka, Japan .,2 Cancer Cell Institute, Kyushu University of Health and Welfare , Nobeoka, Japan .,3 Department of Medical Life Science, Faculty of Medical Bioscience, Kyushu University of Health and Welfare , Nobeoka, Japan
| | - Eiji Ohno
- 1 Graduate School of Health Science Studies, Kyushu University of Health and Welfare , Nobeoka, Japan .,2 Cancer Cell Institute, Kyushu University of Health and Welfare , Nobeoka, Japan .,3 Department of Medical Life Science, Faculty of Medical Bioscience, Kyushu University of Health and Welfare , Nobeoka, Japan
| |
Collapse
|
13
|
Chau M, Deveau TC, Song M, Wei ZZ, Gu X, Yu SP, Wei L. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1α increases regeneration and functional recovery after ischemic stroke. Oncotarget 2017; 8:97537-97553. [PMID: 29228630 PMCID: PMC5722582 DOI: 10.18632/oncotarget.22180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is a leading cause of human death and disability while clinical treatments are limited. The adult brain possesses endogenous regenerative activities that may benefit tissue repair after stroke. Trophic factors such as stromal cell-derived factor 1 alpha (SDF-1α) are upregulated in the ischemic brain, which promote endogenous regeneration. The regenerative response, however, is normally insufficient. Transplantation of exogenous cells has been explored as regenerative therapies. One promising cell type for transplantation is induced pluripotent stem (iPS) cells which are cells genetically reprogrammed from adult somatic cells. We hypothesized that transplanting neural progenitor cells derived from iPS cells (iPS-NPCs) could provide cell replacement and trophic support. The trophic factor SDF-1α was overexpressed in iPS-NPCs by lentiviral transduction to test if SDF-1α could increase regeneration in the ischemic brain. These SDF-1α-iPS-NPCs were differentiated in vitro to express mature neuronal and synaptic markers. Differentiated cells expressed functional Na+ and K+ channels, and fired action potentials. In the oxygen glucose deprivation (OGD) test, SDF-1α-iPS-NPCs survived significantly better compared to control iPS-NPCs. In mice subjected to focal cerebral ischemia in the sensorimotor cortex, iPS-NPCs and SDF-1α-iPS-NPCs were intracranially transplanted into the ischemic cortex 7 days after stroke. Neuronal differentiation of transplanted cells was identified using NeuN 14 days after transplantation. Mice that received SDF-1α-iPS-NPCs had greater numbers of NeuN/BrdU and Glut-1/BrdU co-labeled cells in the peri-infarct area and improved locomotion compared to the control iPS-NPC transplantation. Thus, SDF-1α upregulation in transplanted cells may be a therapeutic strategy to enhance endogenous neurovascular repair after ischemic stroke in adult mice.
Collapse
Affiliation(s)
- Monica Chau
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd C. Deveau
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mingke Song
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zheng Z. Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Suchorska WM, Augustyniak E, Richter M, Łukjanow M, Filas V, Kaczmarczyk J, Trzeciak T. Modified methods for efficiently differentiating human embryonic stem cells into chondrocyte-like cells. POSTEP HIG MED DOSW 2017; 71:500-509. [PMID: 28665279 DOI: 10.5604/01.3001.0010.3831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Human articular cartilage has a poor regenerative capacity. This often results in the serious joint disease- osteoarthritis (OA) that is characterized by cartilage degradation. An inability to self-repair provided extensive studies on AC regeneration. The cell-based cartilage tissue engineering is a promising approach for cartilage regeneration. So far, numerous cell types have been reported to show chondrogenic potential, among others human embryonic stem cells (hESCs). MATERIALS AND METHODS However, the currently used methods for directed differentiation of human ESCs into chondrocyte-like cells via embryoid body (EB) formation, micromass culture (MC) and pellet culture (PC) are not highly efficient and require further improvement. In the present study, these three methods for hESCs differentiation into chondrocyte-like cells in the presence of chondrogenic medium supplemented with diverse combination of growth factors (GFs) were evaluated and modified. RESULTS The protocols established here allow highly efficient, simple and inexpensive production of a large number of chondrocyte-like cells suitable for transplantation into the sites of cartilage injury. The most crucial issue is the selection of appropriate GFs in defined concentration. The obtained stem-derived cells reveal the presence of chondrogenic markers such as type II collagen, Sox6 and Sox9 as well as the lack or significantly lower level of pluripotency markers including Nanog and Oct3/4. DISCUSSION The most efficient method is the differentiation throughout embryoid bodies. In turn, chondrogenic differentiation via pellet culture is the most promising method for implementation on clinical scale. The most useful GFs are TGF-β1, -3 and BMP-2 that possess the most chondrogenic potential. These methods can also be used to obtain chondrocyte-like cells from differentiating induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
| | | | - Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| | | | - Violetta Filas
- Pathology Department, Greater Poland Cancer Centre, Poznan, Poland Poznan University of Medical Sciences, Poland
| | - Jacek Kaczmarczyk
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| |
Collapse
|
15
|
Kim H, Kim D, Ku SH, Kim K, Kim SH, Kwon IC. MicroRNA-mediated non-viral direct conversion of embryonic fibroblasts to cardiomyocytes: comparison of commercial and synthetic non-viral vectors. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1070-1085. [PMID: 28277007 DOI: 10.1080/09205063.2017.1287537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Technological advances opened up new ways of directing cell fate conversion from one cell lineage to another. The direct cell conversion technique has recently attracted much attention in regenerative medicine to treat devastated organs and tissues, particularly having limited regenerative capacity such as the heart and brain. Unfortunately, its clinical application is severely limited due to a safety concern and immunogenicity of viral vectors, as human gene therapy did in the beginning stages. In this study, we examined the possibility of adopting non-viral vectors to direct cell conversion from mouse embryonic fibroblasts to induced cardiomyocytes (iCM) by transient transfection of four types of chemically synthesized micro-RNA mimics (miRNA-1, 133, 208, and 499). Herein, we tested several commercial and synthetic non-viral gene delivery carriers, which could be divided into three different categories: polymers [branched PEI (bPEI), bioreducible PEI (PEI-SS), deoxycholic acid-conjugated PEI (DA-PEI), jetPEI™, SuperFect™], lipids (Lipofectamine 2000™), and peptides (PepMute™). According to the analyses of physicochemical properties, cellular uptake, and cytotoxicity of the carrier/miRNA complexes, DA-PEI exhibited excellent miRNA delivery efficiency to mouse embryonic fibroblasts. One week after a single treatment of DA-PEI/miRNA without other adjuvants, the cells started to express cardiomyocyte-specific markers, such as α-actinin and α-MHC, indicating the formation of cardiomyocyte-like cells. Although the overall frequency of non-viral vector induced cardiomyogenic transdifferentiation was quite low (ca. 0.2%), this study can provide compelling support to develop clinically applicable transdifferentiation techniques.
Collapse
Affiliation(s)
- Hyosuk Kim
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea.,b KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul , South Korea
| | - Dongkyu Kim
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea
| | - Sook Hee Ku
- c Technology Convergence R&BD Group , Korea Institute of Industrial Technology , Daegu , South Korea
| | - Kwangmeyung Kim
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea
| | - Sun Hwa Kim
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea
| | - Ick Chan Kwon
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea.,b KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul , South Korea
| |
Collapse
|
16
|
Yang H, Liu C, Chen B, An J, Zhang R, Zhang Q, Zhao J, He B, Hao DJ. Efficient Generation of Functionally Active Spinal Cord Neurons from Spermatogonial Stem Cells. Mol Neurobiol 2017; 54:788-803. [PMID: 27566610 DOI: 10.1007/s12035-016-0057-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Neural stem cells (NSCs) are hitherto regarded as perspective candidates for cell transplantation in clinical therapies for multilevel spinal cord injury and function restoration. However, the extreme drawbacks of NSCs available for injury transplantation still represent a significant bottleneck in neural regeneration medicine. Therefore, it is essential to establish a suitable cell reservoir as an issue-free alternative. Here, we demonstrate that spermatogonial stem cells (SSCs) derived from rat testis robustly give rise to terminally differentiated, functionally mature spinal cord neurons by using an optimized differentiation protocol. After performing a 3-week in vitro differentiation procedure, most cells exhibited neural morphological features and were Tuj-1 positive. Of note, approximately 60 % of the obtained cells coexpressed choline acetyltransferase (CHAT), acetylcholinesterase (AchE), and calcitonin gene-related peptide (CGRP). More importantly, apart from acquisition of neural antigenic and biochemical properties, nearly all neurons efficiently exhibited in vitro functionality similar to wild-type neurons, such as synapse formation, increased neuronal calcium influx, and electrophysiology. This is the first report revealing consistent and reproducible generation of large amounts of functional neurons from SSCs. Collectively, this system is suitable for studies of SSC transdifferentiation into neuronal cells and can provide sufficient neurons for the treatment of spinal cord injury as well as for genetic and small molecule screenings.
Collapse
Affiliation(s)
- Hao Yang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| | - Cuicui Liu
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Bo Chen
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Jing An
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Rui Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Qian Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Jingjing Zhao
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Baorong He
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| | - Ding-Jun Hao
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| |
Collapse
|
17
|
Abstract
Liver disease is a leading cause of morbidity and mortality. Liver transplantation remains the only proven treatment for end-stage liver failure but is limited by the availability of donor organs. Hepatocyte cell therapy, either with bioartificial liver devices or hepatocyte transplantation, may help address this by delaying or preventing liver transplantation. Early clinical studies have shown promising results, however in most cases, the benefit has been short lived and so further research into these therapies is required. Alternative sources of hepatocytes, including stem cell-derived hepatocytes, are being investigated as the isolation of primary human hepatocytes is limited by the same shortage of donor organs. This review summarises the current clinical experience of hepatocyte cell therapy together with an overview of possible alternative sources of hepatocytes. Current and future areas for research that might lead towards the realisation of the full potential of hepatocyte cell therapy are discussed.
Collapse
Affiliation(s)
- David Christopher Bartlett
- a NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham, Birmingham, UK.,b Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Philip N Newsome
- a NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham, Birmingham, UK.,b Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
18
|
Chau MJ, Deveau TC, Song M, Gu X, Chen D, Wei L. iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells 2015; 32:3075-87. [PMID: 25132189 DOI: 10.1002/stem.1802] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/23/2014] [Indexed: 12/23/2022]
Abstract
Limited treatments are available for perinatal/neonatal stroke. Induced pluripotent stem cells (iPSCs) hold therapeutic promise for stroke treatment, but the benefits of iPSC transplantation in neonates are relatively unknown. We hypothesized that transplanted iPSC-derived neural progenitor cells (iPSC-NPCs) would increase regeneration after stroke. Mouse pluripotent iPSCs were differentiated into neural progenitors using a retinoic acid protocol. Differentiated neural cells were characterized by using multiple criteria and assessments. Ischemic stroke was induced in postnatal day 7 (P7) rats by occluding the right middle cerebral artery and right common carotid artery. iPSC-NPCs (400,000 in 4 µl) were transplanted into the penumbra via intracranial injection 7 days after stroke. Trophic factor expression in the peri-infarct tissue was measured using Western blot analysis. Animals received daily bromodeoxyuridine (BrdU) injections and were sacrificed 21 days after stroke for immunohistochemistry. The vibrissae-elicited forelimb placement test was used to evaluate functional recovery. Differentiated iPSCs expressed mature neuronal markers, functional sodium and potassium channels, and fired action potentials. Several angiogenic and neurogenic trophic factors were identified in iPSC-NPCs. Animals that received iPSC-NPC transplantation had greater expression of stromal cell-derived factor 1-α (SDF-1α) and vascular endothelial growth factor (VEGF) in the peri-infarct region. iPSC-NPCs stained positive for neuronal nuclei (NeuN) or glial fibrillary acidic protein (GFAP) 14 days after transplantation. iPSC-NPC-transplanted animals showed greater numbers of BrdU/NeuN and BrdU/Collagen IV colabeled cells in the peri-infarct area compared with stroke controls and performed better in a sensorimotor functional test after stroke. iPSC-NPC therapy may play multiple therapeutic roles after stroke by providing trophic factors, increasing angiogenesis and neurogenesis, and providing new cells for tissue repair.
Collapse
Affiliation(s)
- Monica J Chau
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
19
|
Winkler S, Hempel M, Brückner S, Mallek F, Weise A, Liehr T, Tautenhahn HM, Bartels M, Christ B. Mouse white adipose tissue-derived mesenchymal stem cells gain pericentral and periportal hepatocyte features after differentiation in vitro, which are preserved in vivo after hepatic transplantation. Acta Physiol (Oxf) 2015; 215:89-104. [PMID: 26235702 DOI: 10.1111/apha.12560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 12/13/2022]
Abstract
AIM Mesenchymal stem cells may differentiate into hepatocyte-like cells in vitro and in vivo. Therefore, they are considered a novel cell resource for the treatment of various liver diseases. Here, the aim was to demonstrate that mesenchymal stem cells may adopt both perivenous and periportal hepatocyte-specific functions in vitro and in vivo. METHODS Adipose tissue-derived mesenchymal stem cells were isolated from immunodeficient C57BL/6 (B6.129S6-Rag2(tm1Fwa) Prf1(tm1Clrk) ) mice and differentiated into the hepatocytic phenotype by applying a simple protocol. Their physiological and metabolic functions were analysed in vitro and after hepatic transplantation in vivo. RESULTS Mesenchymal stem cells changed their morphology from a fibroblastoid into shapes of osteocytes, chondrocytes, adipocytes and hepatocytes. Typical for mesenchymal stem cells, hematopoietic marker genes were not expressed. CD90, which is not expressed on mature hepatocytes, decreased significantly after hepatocytic differentiation. Markers indicative for liver development like hepatic nuclear factor 4 alpha, or for perivenous hepatocyte specification like cytochrome P450 subtype 3a11, and CD26 were significantly elevated. Periportal hepatocyte-specific markers like carbamoylphosphate synthetase 1, the entry enzyme of the urea cycle, were up-regulated. Consequently, cytochrome P450 enzyme activity and urea synthesis increased significantly to values comparable to cultured primary hepatocytes. Both perivenous and periportal qualities were preserved after hepatic transplantation and integration into the host parenchyma. CONCLUSIONS Adult mesenchymal stem cells from adipose tissue differentiated into hepatocyte-like cells featuring both periportal and perivenous functions. Hence, they are promising candidates for the treatment of region-specific liver cell damage and may support organ regeneration in acute and chronic liver diseases.
Collapse
Affiliation(s)
- S. Winkler
- Applied Molecular Hepatology Laboratory; Department of Visceral, Transplantation, Thoracic and Vascular Surgery; University Hospital of Leipzig; Leipzig Germany
| | - M. Hempel
- Applied Molecular Hepatology Laboratory; Department of Visceral, Transplantation, Thoracic and Vascular Surgery; University Hospital of Leipzig; Leipzig Germany
| | - S. Brückner
- Applied Molecular Hepatology Laboratory; Department of Visceral, Transplantation, Thoracic and Vascular Surgery; University Hospital of Leipzig; Leipzig Germany
| | - F. Mallek
- Jena University Hospital; Institute of Human Genetics; Friedrich Schiller University; Jena Germany
| | - A. Weise
- Jena University Hospital; Institute of Human Genetics; Friedrich Schiller University; Jena Germany
| | - T. Liehr
- Jena University Hospital; Institute of Human Genetics; Friedrich Schiller University; Jena Germany
| | - H.-M. Tautenhahn
- Applied Molecular Hepatology Laboratory; Department of Visceral, Transplantation, Thoracic and Vascular Surgery; University Hospital of Leipzig; Leipzig Germany
- Translational Centre for Regenerative Medicine (TRM); University of Leipzig; Leipzig Germany
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery; University Hospital of Leipzig; Leipzig Germany
| | - M. Bartels
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery; University Hospital of Leipzig; Leipzig Germany
| | - B. Christ
- Applied Molecular Hepatology Laboratory; Department of Visceral, Transplantation, Thoracic and Vascular Surgery; University Hospital of Leipzig; Leipzig Germany
- Translational Centre for Regenerative Medicine (TRM); University of Leipzig; Leipzig Germany
| |
Collapse
|
20
|
Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, Chudickova M, Cejkova J. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Stem Cells Transl Med 2015; 4:1052-63. [PMID: 26185258 DOI: 10.5966/sctm.2015-0039] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/15/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Stem cell-based therapy has become an attractive and promising approach for the treatment of severe injuries or thus-far incurable diseases. However, the use of stem cells is often limited by a shortage of available tissue-specific stem cells; therefore, other sources of stem cells are being investigated and tested. In this respect, mesenchymal stromal/stem cells (MSCs) have proven to be a promising stem cell type. In the present study, we prepared MSCs from bone marrow (BM-MSCs) or adipose tissue (Ad-MSCs) as well as limbal epithelial stem cells (LSCs), and their growth, differentiation, and secretory properties were compared. The cells were grown on nanofiber scaffolds and transferred onto the alkali-injured eye in a rabbit model, and their therapeutic potential was characterized. We found that BM-MSCs and tissue-specific LSCs had similar therapeutic effects. Clinical characterization of the healing process, as well as the evaluation of corneal thickness, re-epithelialization, neovascularization, and the suppression of a local inflammatory reaction, were comparable in the BM-MSC- and LSC-treated eyes, but results were significantly better than in injured, untreated eyes or in eyes treated with a nanofiber scaffold alone or with a nanofiber scaffold seeded with Ad-MSCs. Taken together, the results show that BM-MSCs' therapeutic effect on healing of injured corneal surface is comparable to that of tissue-specific LSCs. We suggest that BM-MSCs can be used for ocular surface regeneration in cases when autologous LSCs are absent or difficult to obtain. SIGNIFICANCE Damage of ocular surface represents one of the most common causes of impaired vision or even blindness. Cell therapy, based on transplantation of stem cells, is an optimal treatment. However, if limbal stem cells (LSCs) are not available, other sources of stem cells are tested. Mesenchymal stem cells (MSCs) are a convenient type of cell for stem cell therapy. The therapeutic potential of LSCs and MSCs was compared in an experimental model of corneal injury, and healing was observed following chemical injury. MSCs and tissue-specific LSCs had similar therapeutic effects. The results suggest that bone marrow-derived MSCs can be used for ocular surface regeneration in cases when autologous LSCs are absent or difficult to obtain.
Collapse
Affiliation(s)
- Vladimir Holan
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Natural Science, Charles University, Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - Peter Trosan
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Natural Science, Charles University, Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - Cestmir Cejka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Natural Science, Charles University, Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - Eliska Javorkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Natural Science, Charles University, Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - Alena Zajicova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Natural Science, Charles University, Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - Barbora Hermankova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Natural Science, Charles University, Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - Milada Chudickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Natural Science, Charles University, Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - Jitka Cejkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Natural Science, Charles University, Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| |
Collapse
|
21
|
Smith RK, Garvican ER, Fortier LA. The current 'state of play' of regenerative medicine in horses: what the horse can tell the human. Regen Med 2015; 9:673-85. [PMID: 25372081 DOI: 10.2217/rme.14.42] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The horse is an attractive model for many human age-related degenerative diseases of the musculoskeletal system because it is a large animal species that both ages and exercises, and develops naturally occurring injuries with many similarities to the human counterpart. It therefore represents an ideal species to use as a 'proving ground' for new therapies, most notably regenerative medicine. Regenerative techniques using cell-based therapies for the treatment of equine musculoskeletal disease have been in use for over a decade. This review article provides a summary overview of the sources, current challenges and problems surrounding the use of stem cell and non-cell-based therapy in regenerative medicine in horses and is based on presentations from a recent Havemeyer symposium on equine regenerative medicine where speakers are selected from leading authorities in both equine and human regenerative medicine fields from 10 different countries.
Collapse
Affiliation(s)
- Roger Kw Smith
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | | | | |
Collapse
|
22
|
Bobis-Wozowicz S, Kmiotek K, Sekula M, Kedracka-Krok S, Kamycka E, Adamiak M, Jankowska U, Madetko-Talowska A, Sarna M, Bik-Multanowski M, Kolcz J, Boruczkowski D, Madeja Z, Dawn B, Zuba-Surma EK. Human Induced Pluripotent Stem Cell-Derived Microvesicles Transmit RNAs and Proteins to Recipient Mature Heart Cells Modulating Cell Fate and Behavior. Stem Cells 2015; 33:2748-61. [PMID: 26031404 DOI: 10.1002/stem.2078] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 12/18/2022]
Abstract
Microvesicles (MVs) are membrane-enclosed cytoplasmic fragments released by normal and activated cells that have been described as important mediators of cell-to-cell communication. Although the ability of human induced pluripotent stem cells (hiPSCs) to participate in tissue repair is being increasingly recognized, the use of hiPSC-derived MVs (hiPSC-MVs) in this regard remains unknown. Accordingly, we investigated the ability of hiPSC-MVs to transfer bioactive molecules including mRNA, microRNA (miRNA), and proteins to mature target cells such as cardiac mesenchymal stromal cells (cMSCs), and we next analyzed effects of hiPSC-MVs on fate and behavior of such target cells. The results show that hiPSC-MVs derived from integration-free hiPSCs cultured under serum-free and feeder-free conditions are rich in mRNA, miRNA, and proteins originated from parent cells; however, the levels of expression vary between donor cells and MVs. Importantly, we found that transfer of hiPSC components by hiPSC-MVs impacted on transcriptome and proteomic profiles of target cells as well as exerted proliferative and protective effects on cMSCs, and enhanced their cardiac and endothelial differentiation potential. hiPSC-MVs also transferred exogenous transcripts from genetically modified hiPSCs that opens new perspectives for future strategies to enhance MV content. We conclude that hiPSC-MVs are effective vehicles for transferring iPSC attributes to adult somatic cells, and hiPSC-MV-mediated horizontal transfer of RNAs and proteins to injured tissues may be used for therapeutic tissue repair. In this study, for the first time, we propose a new concept of use of hiPSCs as a source of safe acellular bioactive derivatives for tissue regeneration.
Collapse
Affiliation(s)
- Sylwia Bobis-Wozowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Kmiotek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Sekula
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kamycka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Adamiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Chair of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | | | - Jacek Kolcz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, Kansas, USA
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
23
|
Kamada M, Mitsui Y, Matsuo T, Takahashi T. Reversible transformation and de-differentiation of human cells derived from induced pluripotent stem cell teratomas. Hum Cell 2015; 29:1-9. [PMID: 26069211 PMCID: PMC4705144 DOI: 10.1007/s13577-015-0119-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 11/29/2022]
Abstract
We first aimed to generate transformed cell lines from a human induced pluripotent stem cell (hiPSC)-teratoma, and then examined the tumorigenic risks of the differentiated cells from hiPSC explant, because hiPSC-derivatives give rise to tumors in immune-deficient mice when transplanted. The colonies isolated from sparse cultures of hiPSC-teratoma cells expressed NANOG and OCT3/4 strongly, and telomerase reverse transcriptase (TERT) weakly. However, soft agar assay demonstrated that only one of them generated colonies in the gel, though hiPSCs, hTERT-transfected immortal cells, and its oncogene-transfected cells did not form any colonies. Furthermore, none of colonies isolated from the soft agar gel on primary culture (passage 0) of teratoma cells, expressed NANOG and OCT3/4 in the expanded cultures. The second soft agar assay on the colony-derived cells was unexpectedly negative. The cumulative growth curve, telomere shortening, and senescence-associated β-galactosidase (SA β-gal) staining confirmed the mortality of these cells, suggesting their reversible transformation. By using medium for embryonic stem cell (ESC medium) after MCDB 131 (MCDB) medium, the differentiated culture cells derived from hiPSC-teratoma converted into the cells expressing undifferentiated marker proteins, which lost afterwords even in ESC medium with feeder SNL76/7. The reversibility of transformation and de-differentiation suggest that tumorigenic risks of differentiated cells arise when they are exposed to suitable niches in vivo. Thus, removal of only the undifferentiated cells from iPSC-derivatives before transplantation does not solve the problem. Elucidation of mechanisms of reversibility and control of epigenetic changes is discussed as a safety bottleneck for hiPSC therapy.
Collapse
Affiliation(s)
- Mizuna Kamada
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Youji Mitsui
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan. .,Foundation for Advancement of International Science, Department of Research Development, Ibaraki, 305-0821, Japan.
| | - Taira Matsuo
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Tomoko Takahashi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan.
| |
Collapse
|
24
|
Cordeiro MF, Horn AP. Stem cell therapy in intracerebral hemorrhage rat model. World J Stem Cells 2015; 7:618-629. [PMID: 25914768 PMCID: PMC4404396 DOI: 10.4252/wjsc.v7.i3.618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/03/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a very complex pathology, with many different not fully elucidated etiologies and prognostics. It is the most severe subtype of stroke, with high mortality and morbidity rates. Unfortunately, despite the numerous promising preclinical assays including neuroprotective, anti-hypertensive, and anti-inflammatory drugs, to this moment only symptomatic treatments are available, motivating the search for new alternatives. In this context, stem cell therapy emerged as a promising tool. However, more than a decade has passed, and there is still much to be learned not only about stem cells, but also about ICH itself, and how these two pieces come together. To date, rats have been the most widely used animal model in this research field, and there is much more to be learned from and about them. In this review, we first summarize ICH epidemiology, risk factors, and pathophysiology. We then present different methods utilized to induce ICH in rats, and examine how accurately they represent the human disease. Next, we discuss the different types of stem cells used in previous ICH studies, also taking into account the tested transplantation sites. Finally, we summarize what has been achieved in assays with stem cells in rat models of ICH, and point out some relevant issues where attention must be given in future efforts.
Collapse
|
25
|
Mariano ED, Teixeira MJ, Marie SKN, Lepski G. Adult stem cells in neural repair: Current options, limitations and perspectives. World J Stem Cells 2015; 7:477-482. [PMID: 25815131 PMCID: PMC4369503 DOI: 10.4252/wjsc.v7.i2.477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseases that defy doctors and researchers around the world. Stem cells can be divided into three main groups: (1) embryonic stem cells; (2) fetal stem cells; and (3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.
Collapse
|
26
|
Malecki M. 'Above all, do no harm': safeguarding pluripotent stem cell therapy against iatrogenic tumorigenesis. Stem Cell Res Ther 2014; 5:73. [PMID: 25158017 PMCID: PMC4076624 DOI: 10.1186/scrt462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cells are the foundations of regenerative medicine. However, the worst possible complication of using pluripotent stem cells in therapy could be iatrogenic cancerogenesis. Nevertheless, despite the rapid progress in the development of new techniques for induction of pluripotency and for directed differentiation, risks of cancerogenic transformation of therapeutically implanted pluripotent stem cells still persist. 'Above all, do no harm', as quoted from the Hippocratic Oath, is our ultimate creed. Therefore, the primary goal in designing any therapeutic regimes involving stem cells should be the elimination of any possibilities of their neoplasmic transformation. I review here the basic strategies that have been designed to attain this goal: sorting out undifferentiated, pluripotent stem cells with antibodies targeting surface-displayed biomarkers; sorting in differentiating cells, which express recombinant proteins as reporters; killing undifferentiated stem cells with toxic antibodies or antibody-guided toxins; eliminating undifferentiated stem cells with cytotoxic drugs; making potentially tumorigenic stem cells sensitive to pro-drugs by transformation with suicide-inducing genes; eradication of differentiation-refractive stem cells by self-triggered transgenic expression of human recombinant DNases. Every pluripotent undifferentiated stem cell poses a risk of neoplasmic transformation. Therefore, the aforementioned or other novel strategies that would safeguard against iatrogenic transformation of these stem cells should be considered for incorporation into every stem cell therapy trial.
Collapse
|