1
|
Saito M, Tokunaga N, Saito T, Hatakenaka T, Sasaki T, Matsuki N, Minagawa S. Connexin 45 is a novel suppressor of melanoma metastasis. Cytotechnology 2023; 75:103-113. [PMID: 36969569 PMCID: PMC10030756 DOI: 10.1007/s10616-022-00563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The expression spectra of connexin (Cx) isoforms were investigated in three mouse melanoma cell lines: B16-F1 (F1), B16-F10 (F10), and B16-BL6 (BL6). Metastatic potential intensity was higher in the order of F1, F10, and BL6. A remarkable behavior of Cx45 was found among 20 isoforms. The expression level of Cx45 was highest in F1 and lowest in BL6. It was inductively predicted that Cx45 might be a novel suppressor of metastasis. A Cx45-overexpressing BL6 cell line (Cx45 +BL6) was developed and its properties were compared with those of a wild-type cell line of BL6 (W-BL6). Compared to W-BL6, Cx45 +BL6 showed reduced wound healing, Transwell® permeability, and matrix metalloproteinase 9 expression, suggesting the suppression of cellular migration and invasion. The expression of E-cadherin and integrin β1 in Cx45 +BL6 was also lower than in W-BL6, suggesting reduced cell adhesion. The decrease in cell adhesion was supported by the cell washing-out assay. In contrast, no difference between W-BL6 and Cx45 +BL6 was observed in cell proliferation, suggesting no effect on cell-cycle regulating factors. Finally, an in vivo assay revealed a significant decrease in the number of metastatic colonies of Cx45 +BL6 (176 ± 25/lung) in comparison with those of W-BL6 (252 ± 23/lung) in a mouse model. In conclusion, Cx45 is a novel suppressor of melanoma metastasis. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00563-x.
Collapse
Affiliation(s)
- Mikako Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588 Tokyo, Japan
| | - Naruwa Tokunaga
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588 Tokyo, Japan
| | - Toshiki Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588 Tokyo, Japan
| | - Tomohiro Hatakenaka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588 Tokyo, Japan
| | - Tomonori Sasaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588 Tokyo, Japan
| | - Nahoko Matsuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588 Tokyo, Japan
| | - Seiya Minagawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588 Tokyo, Japan
| |
Collapse
|
2
|
Effect of Nanog overexpression on the metastatic potential of a mouse melanoma cell line B16-BL6. Mol Cell Biochem 2021; 476:2651-2661. [PMID: 33665763 PMCID: PMC8192392 DOI: 10.1007/s11010-021-04110-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Nanog, a marker and regulator of the undifferentiated state in embryonic stem cells were anticipated to be an effective enhancer of cancer metastasis. We have developed a Nanog overexpressing mouse melanoma cell line B16-BL6 (BL6). BL6 was well recognized as a cell line with a high metastatic potential. In vitro tests revealed the enhancement of cell proliferation, wound healing activity, and matrix metalloproteinase 9 (MMP9) activity. Nanog-induced up- or down-regulated genes were comprehensively analyzed by transcriptome sequencing using Nanog+BL6 and wild-type BL6. Principally, up-regulated genes were involved in vesicle-aided glucose transport and oxidative phosphorylation, while down-regulated genes were associated with immunosuppression and apoptosis. A marked finding was that TGF-β1 was down-regulated, because TGF-β1 has been well discussed about its suppressive/progressive dual role in cancer. In vivo test showed that the number and volume of metastatic colonies of BL6 to lung were as high as 115 colonies/lung and 5.6 mm3/lung. Under this condition, Nanog overexpression caused a progressive effect (150 colonies/lung, p = 0.25; 9.2 mm3/lung, p = 0.13) rather than a suppressive effect on the metastasis. In this study, the effectiveness of Nanog overexpression in enhancing the metastatic potential of melanoma cell lines has been demonstrated for the first time.
Collapse
|