1
|
Ishii G. New insights into cancer pathology learned from the dynamics of cancer-associated fibroblasts. Pathol Int 2024; 74:493-507. [PMID: 38923250 DOI: 10.1111/pin.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Paget's "Seed and Soil" theory, proposed in 1889, emphasizes the importance of the microenvironment where cancer cells grow in metastatic sites. Over a century later, this concept remains a cornerstone in comprehending cancer biology and devising treatment strategies. The "Seed and Soil" theory, which initially explained how cancer spreads to distant organs, now also applies to the tumor microenvironment (TME) within primary tumors. This theory emphasizes the critical interaction between cancer cells ("seeds") and their surrounding environment ("soil") and how this interaction affects both tumor progression within the primary site and at metastatic sites. An important point to note is that the characteristics of the TME are not static but dynamic, undergoing substantial changes during tumor progression and after treatment with therapeutic drugs. Cancer-associated fibroblasts (CAFs), recognized as the principal noncancerous cellular component within the TME, play multifaceted roles in tumor progression including promoting angiogenesis, remodeling the extracellular matrix, and regulating immune responses. In this comprehensive review, we focus on the findings regarding how the dynamics of CAFs contribute to cancer progression and drug sensitivity. Understanding the dynamics of CAFs could provide new insights into cancer pathology and lead to important advancements in cancer research and treatment.
Collapse
Affiliation(s)
- Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
2
|
Miroshnychenko D, Miti T, Kumar P, Miller A, Laurie M, Giraldo N, Bui MM, Altrock PM, Basanta D, Marusyk A. Stroma-Mediated Breast Cancer Cell Proliferation Indirectly Drives Chemoresistance by Accelerating Tumor Recovery between Chemotherapy Cycles. Cancer Res 2023; 83:3681-3692. [PMID: 37791818 PMCID: PMC10646478 DOI: 10.1158/0008-5472.can-23-0398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
The ability of tumors to survive therapy reflects both cell-intrinsic and microenvironmental mechanisms. Across many cancers, including triple-negative breast cancer (TNBC), a high stroma/tumor ratio correlates with poor survival. In many contexts, this correlation can be explained by the direct reduction of therapy sensitivity induced by stroma-produced paracrine factors. We sought to explore whether this direct effect contributes to the link between stroma and poor responses to chemotherapies. In vitro studies with panels of TNBC cell line models and stromal isolates failed to detect a direct modulation of chemoresistance. At the same time, consistent with prior studies, fibroblast-produced secreted factors stimulated treatment-independent enhancement of tumor cell proliferation. Spatial analyses indicated that proximity to stroma is often associated with enhanced tumor cell proliferation in vivo. These observations suggested an indirect link between stroma and chemoresistance, where stroma-augmented proliferation potentiates the recovery of residual tumors between chemotherapy cycles. To evaluate this hypothesis, a spatial agent-based model of stroma impact on proliferation/death dynamics was developed that was quantitatively parameterized using inferences from histologic analyses and experimental studies. The model demonstrated that the observed enhancement of tumor cell proliferation within stroma-proximal niches could enable tumors to avoid elimination over multiple chemotherapy cycles. Therefore, this study supports the existence of an indirect mechanism of environment-mediated chemoresistance that might contribute to the negative correlation between stromal content and poor therapy outcomes. SIGNIFICANCE Integration of experimental research with mathematical modeling reveals an indirect microenvironmental chemoresistance mechanism by which stromal cells stimulate breast cancer cell proliferation and highlights the importance of consideration of proliferation/death dynamics. See related commentary by Wall and Echeverria, p. 3667.
Collapse
Affiliation(s)
- Daria Miroshnychenko
- Department of Metabolism and Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Tatiana Miti
- Department of Integrated Mathematical Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Pragya Kumar
- Department of Metabolism and Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Anna Miller
- Department of Integrated Mathematical Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark Laurie
- Department of Metabolism and Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nathalia Giraldo
- Department of Metabolism and Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Molecular Medicine, University of South Florida, Tampa, Florida
| | - Marilyn M. Bui
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Philipp M. Altrock
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - David Basanta
- Department of Integrated Mathematical Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Andriy Marusyk
- Department of Metabolism and Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Molecular Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
3
|
Pascual-Antón L, Sandoval P, González-Mateo GT, Kopytina V, Tomero-Sanz H, Arriero-País EM, Jiménez-Heffernan JA, Fabre M, Egaña I, Ferrer C, Simón L, González-Cortijo L, Sainz de la Cuesta R, López-Cabrera M. Targeting carcinoma-associated mesothelial cells with antibody-drug conjugates in ovarian carcinomatosis. J Pathol 2023; 261:238-251. [PMID: 37555348 DOI: 10.1002/path.6170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Ovarian carcinomatosis is characterized by the accumulation of carcinoma-associated mesothelial cells (CAMs) in the peritoneal stroma and mainly originates through a mesothelial-to-mesenchymal transition (MMT) process. MMT has been proposed as a therapeutic target for peritoneal metastasis. Most ovarian cancer (OC) patients present at diagnosis with peritoneal seeding, which makes tumor progression control difficult by MMT modulation. An alternative approach is to use antibody-drug conjugates (ADCs) targeted directly to attack CAMs. This strategy could represent the cornerstone of precision-based medicine for peritoneal carcinomatosis. Here, we performed complete transcriptome analyses of ascitic fluid-isolated CAMs in advanced OC patients with primary-, high-, and low-grade, serous subtypes and following neoadjuvant chemotherapy. Our findings suggest that both cancer biological aggressiveness and chemotherapy-induced tumor mass reduction reflect the MMT-associated changes that take place in the tumor surrounding microenvironment. Accordingly, MMT-related genes, including fibroblast activation protein (FAP), mannose receptor C type 2 (MRC2), interleukin-11 receptor alpha (IL11RA), myristoylated alanine-rich C-kinase substrate (MARCKS), and sulfatase-1 (SULF1), were identified as specific actionable targets in CAMs of OC patients, which is a crucial step in the de novo design of ADCs. These cell surface target receptors were also validated in peritoneal CAMs of colorectal cancer peritoneal implants, indicating that ADC-based treatment could extend to other abdominal tumors that show peritoneal colonization. As proof of concept, a FAP-targeted ADC reduced tumor growth in an OC xenograft mouse model with peritoneal metastasis-associated fibroblasts. In summary, we propose MMT as a potential source of ADC-based therapeutic targets for peritoneal carcinomatosis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Guadalupe T González-Mateo
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Valeria Kopytina
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Henar Tomero-Sanz
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Eva María Arriero-País
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | | | | | | | | | | | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| |
Collapse
|
4
|
Miroshnychenko D, Miti T, Miller A, Kumar P, Laurie M, Bui MM, Altrock PM, Basanta D, Marusyk A. Paracrine enhancement of tumor cell proliferation provides indirect stroma-mediated chemoresistance via acceleration of tumor recovery between chemotherapy cycles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527543. [PMID: 36798328 PMCID: PMC9934626 DOI: 10.1101/2023.02.07.527543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The ability of tumors to survive therapy is mediated not only by cell-intrinsic but also cell-extrinsic, microenvironmental mechanisms. Across many cancers, including triple-negative breast cancer (TNBC), a high stroma/tumor ratio correlates with poor survival. In many contexts, this correlation can be explained by the direct reduction of therapy sensitivity by stroma-produced paracrine factors through activating pro-survival signaling and stemness. We sought to explore whether this direct effect contributes to the link between stroma and poor responses to chemotherapies in TNBC. Our in vitro studies with panels of TNBC cell line models and stromal isolates failed to detect a direct modulation of chemoresistance. However, we found that fibroblasts often enhance baseline tumor cell proliferation. Consistent with this in vitro observation, we found evidence of stroma-enhanced TNBC cell proliferation in vivo , in xenograft models and patient samples. Based on these observations, we hypothesized an indirect link between stroma and chemoresistance, where stroma-augmented proliferation potentiates the recovery of residual tumors between chemotherapy cycles. To test this hypothesis, we developed a spatial agent-based model of tumor response to repeated dosing of chemotherapy. The model was quantitatively parameterized from histological analyses and experimental studies. We found that even a slight enhancement of tumor cell proliferation within stroma-proximal niches can strongly enhance the ability of tumors to survive multiple cycles of chemotherapy under biologically and clinically feasible parameters. In summary, our study uncovered a novel, indirect mechanism of chemoresistance. Further, our study highlights the limitations of short-term cytotoxicity assays in understanding chemotherapy responses and supports the integration of experimental and in silico modeling.
Collapse
|
5
|
Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22:169-182. [PMID: 34904919 DOI: 10.1080/14737140.2022.2019018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) has a markedly poor prognosis as it progresses, and the prognosis is still unsatisfactory even with modern treatments. Cancer is composed of not only cancer cells, but also stroma consisting of various cell types. Cancer-associated fibroblasts (CAFs) are a major component of the stroma and the associated tumor microenvironment (TME). Particularly, CAFs are a critical component in elucidating the biological mechanisms of cancer progression and new therapeutic targets. This article outlines the TME formed by CAFs in NSCLC. AREAS COVERED Focusing on the TME in NSCLC, we discuss the mechanisms by which CAFs are involved in cancer progression, drug resistance, and the development of therapies targeting CAFs. EXPERT OPINION In the TME, CAFs profoundly contribute to tumor progression by interacting with cancer cells through direct contact or paracrine cytokine signaling. CAFs also interact with various other stromal components to establish a tumor-promoting immunosuppressive microenvironment and remodel the extracellular matrix. Furthermore, these effects are closely associated with drug resistance. Further elucidation of the stromal microenvironment, including CAFs, could prove to be crucial in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
6
|
Ishii T, Suzuki A, Kuwata T, Hisamitsu S, Hashimoto H, Ohara Y, Yanagihara K, Mitsunaga S, Yoshino T, Kinoshita T, Ochiai A, Shitara K, Ishii G. Drug-exposed cancer-associated fibroblasts facilitate gastric cancer cell progression following chemotherapy. Gastric Cancer 2021; 24:810-822. [PMID: 33837489 DOI: 10.1007/s10120-021-01174-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer progression following chemotherapy is a significant barrier to effective cancer treatment. We aimed to evaluate the role of drug-exposed cancer-associated fibroblasts (CAFs) in the growth and progression of drug-exposed gastric cancer (GC) cells and to explore the underlying molecular mechanism. METHODS The human GC cell line 44As3 and CAFs were treated with 5-fluorouracil and oxaliplatin (5FU + OX). 5FU + OX-pretreated 44As3 cells were then cultured in a conditioned medium (CM) from 5FU + OX-pretreated CAFs, and the growth and migration/invasion ability of the cells were evaluated. We also compared the clinicopathological characteristics of the GC patients treated with S1 + OX in accordance with the properties of their resected specimens, focusing on the number of CAFs. Changes in gene expression in CAFs and 44As3 cells were comprehensively analyzed using RNA-seq analysis. RESULTS The CM from 5FU + OX-pretreated CAFs promoted the migration and invasion of 5FU + OX-pretreated 44As3 cells. Although the number of cases was relatively small (n = 21), the frequency of positive cases of lymphovascular invasion and the recurrence rate were significantly higher in those with more residual CAF. RNA-seq analysis revealed 5FU + OX-pretreated CAF-derived glycoprotein 130 (gp130) as a candidate factor contributing to the increased migration of 5FU + OX-pretreated 44As3 cells. Administration of the gp130 inhibitor SC144 prevented the increased migration ability of 5FU + OX-pretreated 44As3 cells owing to drug-treated CAFs. CONCLUSIONS Our findings provide evidence regarding the interactions between GC cells and CAFs in the tumor microenvironment following chemotherapy, suggesting that ligands for gp130 may be novel therapeutic targets for suppressing or preventing metastasis in GC.
Collapse
Affiliation(s)
- Takahiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.,Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.,Courses of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, National Cancer Center, Kashiwa, Chiba, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, National Cancer Center, Kashiwa, Chiba, Japan
| | - Shoshi Hisamitsu
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hiroko Hashimoto
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Yuuki Ohara
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kazuyoshi Yanagihara
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shuichi Mitsunaga
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.,Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takahiro Kinoshita
- Department of Gastric Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan. .,Courses of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, National Cancer Center, Kashiwa, Chiba, Japan.
| |
Collapse
|
7
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
8
|
Ishii G, Ishii T. Review of cancer-associated fibroblasts and their microenvironment in post-chemotherapy recurrence. Hum Cell 2020; 33:938-945. [PMID: 32852669 DOI: 10.1007/s13577-020-00417-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Cancer tissue comprises not only cancer cells, but also several types of non-cancerous cells, such as cancer-associated fibroblasts. These fibroblasts directly and/or indirectly communicate with the cancer cells and other types of stromal cells, to create a specific tumor microenvironment. Cytotoxic chemotherapy plays a central role in treating cancer; however, tumor re-progression (recurrence) is a significant problem for cancer patients. Cytotoxic anticancer drugs act on fibroblasts as well as cancer cells and, after chemotherapy, all surviving cells are in contact with one another in the local environment. Therefore, an understanding of the molecular interactions between surviving cancer cells and fibroblasts is necessary to prevent tumor re-progression and to sustain the effect of cytotoxic agents. After chemotherapy, the number of fibroblasts may increase, some of which are identifiable as tumor-promoting. In this review, we discuss the significance of cancer-associated fibroblasts in tumor re-progression after chemotherapy, and the potential value of targeting them to enhance clinical outcomes.
Collapse
Affiliation(s)
- Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
- Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research and Clinical Trial Center, Chiba, Japan.
| | - Takahiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research and Clinical Trial Center, Chiba, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| |
Collapse
|