1
|
Sato K, Koyanagi-Aoi M, Uehara K, Yamashita Y, Shinohara M, Lee S, Reinhardt A, Woltjen K, Chiba K, Miyake H, Fujisawa M, Aoi T. Efficient differentiation of human iPSCs into Leydig-like cells capable of long-term stable secretion of testosterone. Stem Cell Reports 2025; 20:102392. [PMID: 39824187 PMCID: PMC11864132 DOI: 10.1016/j.stemcr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
Late-onset hypogonadism (LOH) syndrome is characterized by age-related testosterone deficiency and negatively affects the quality of life of older men. A promising therapeutic approach for LOH syndrome is transplantation of testosterone-producing Leydig-like cells (LLCs) derived from human induced pluripotent stem cells (hiPSCs). However, previous studies have encountered obstacles, such as limited cell longevity, insufficient testosterone production, and inefficiency of differentiation. To address these issues, we developed a novel protocol that includes forced NR5A1 expression, a cytokine cocktail promoting mesoderm differentiation, and a transitional shift from 3D to 2D cultures. The resultant cells survived on culture dishes for over 16 weeks, produced 22-fold more testosterone than the conventional method, and constituted a homogeneous population of LLCs with a differentiation efficiency exceeding 99% without purification. Furthermore, these LLCs were successfully engrafted subcutaneously into mice, resulting in increased serum testosterone levels. Our study will facilitate innovative therapeutic strategies for LOH syndrome.
Collapse
Affiliation(s)
- Katsuya Sato
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Keiichiro Uehara
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Department of Diagnostic Pathology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yosuke Yamashita
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Molecular Epidemiology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Suji Lee
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Anika Reinhardt
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koji Chiba
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hideaki Miyake
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Masato Fujisawa
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan; Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
2
|
Mohammadi A, Shabani R, Bashiri Z, Rafiei S, Asgari H, Koruji M. Therapeutic potential of exosomes in spermatogenesis regulation and male infertility. Biol Cell 2024; 116:e2300127. [PMID: 38593304 DOI: 10.1111/boc.202300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Spermatogenesis is a fundamental process crucial for male reproductive health and fertility. Exosomes, small membranous vesicles released by various cell types, have recently garnered attention for their role in intercellular communication. OBJECTIVE This review aims to comprehensively explore the role of exosomes in regulating spermatogenesis, focusing on their involvement in testicular development and cell-to-cell communication. METHODS A systematic examination of literature was conducted to gather relevant studies elucidating the biogenesis, composition, and functions of exosomes in the context of spermatogenesis. RESULTS Exosomes play a pivotal role in orchestrating the complex signaling networks required for proper spermatogenesis. They facilitate the transfer of key regulatory molecules between different cell populations within the testes, including Sertoli cells, Leydig cells, and germ cells. CONCLUSION The emerging understanding of exosome-mediated communication sheds light on novel mechanisms underlying spermatogenesis regulation. Further research in this area holds promise for insights into male reproductive health and potential therapeutic interventions.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Sara Rafiei
- Department of Botany and Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yuan F, Bai K, Hou Y, Zou X, Sun J. Small Molecule Cocktails Promote Fibroblast-to-Leydig-like Cell Conversion for Hypogonadism Therapy. Pharmaceutics 2023; 15:2456. [PMID: 37896216 PMCID: PMC10610100 DOI: 10.3390/pharmaceutics15102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Male hypogonadism arises from the inadequate production of testosterone (T) by the testes, primarily due to Leydig cell (LC) dysfunction. Small molecules possess several advantages, including high cell permeability, ease of synthesis, standardization, and low effective concentration. Recent investigations have illuminated the potential of small molecule combinations to facilitate direct lineage reprogramming, removing the need for transgenes by modulating cellular signaling pathways and epigenetic modifications. In this study, we have identified a specific cocktail of small molecules, comprising forskolin, DAPT, purmorphamine, 8-Br-cAMP, 20α-hydroxycholesterol, and SAG, capable of promoting the conversion of fibroblasts into Leydig-like cells (LLCs). These LLCs expressed key genes involved in testosterone synthesis, such as Star, Cyp11a1, and Hsd3b1, and exhibited the ability to secrete testosterone in vitro. Furthermore, they successfully restored serum testosterone levels in testosterone-castrated mice in vivo. The small molecule cocktails also induced alterations in the epigenetic marks, specifically H3K4me3, and enhanced chromosomal accessibility on core steroidogenesis genes. This study presents a reliable methodology for generating Leydig-like seed cells that holds promise as a novel therapeutic approach for hypogonadism.
Collapse
Affiliation(s)
| | | | | | | | - Jie Sun
- Department of Urology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China; (F.Y.); (K.B.); (Y.H.); (X.Z.)
| |
Collapse
|
4
|
Huang H, Zhang W, Zhang J, Zhao A, Jiang H. Epigenome editing based on CRISPR/dCas9 p300 facilitates transdifferentiation of human fibroblasts into Leydig-like cells. Exp Cell Res 2023; 425:113551. [PMID: 36914062 DOI: 10.1016/j.yexcr.2023.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Recently, Leydig cell (LCs) transplantation has a promising potential to treat male hypogonadism. However, the scarcity of seed cells is the actual barrier impeding the application of LCs transplantation. Utilizing the cutting-edge CRISPR/dCas9VP64 technology, human foreskin fibroblasts (HFFs) were transdifferentiated into Leydig-like cells(iLCs) in previous study, but the efficiency of transdifferentiation is not very satisfactory. Therefore, this study was conducted to further optimize the CRISPR/dCas9 system for obtaining sufficient iLCs. First, the stable CYP11A1-Promoter-GFP-HFFs cell line was established by infecting HFFs with CYP11A1-Promoter-GFP lentiviral vectors, and then co-infected with dCas9p300 and the combination of sgRNAs targeted to NR5A1, GATA4 and DMRT1. Next, this study adopted quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence to determine the efficiency of transdifferentiation, the generation of testosterone, the expression levels of steroidogenic biomarkers. Moreover, we utilized chromatin immuno-precipitation (ChIP) followed by quantitative polymerase chain reaction (ChIP-qPCR) to measure the levels of acetylation of targeted H3K27. The results revealed that advanced dCas9p300 facilitated generation of iLCs. Moreover, the dCas9p300-mediated iLCs significantly expressed the steroidogenic biomarkers and produced more testosterone with or without LH treatment than the dCas9VP64-mediated. Additionally, preferred enrichment in H3K27ac at the promoters was detected only with dCas9p300 treatment. The data provided here imply that the improved version of dCas9 can aid in the harvesting of iLCs, and will provide sufficient seed cells for cell transplantation treatment of androgen deficiency in the future.
Collapse
Affiliation(s)
- Hua Huang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China.
| | - Wen Zhang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Jian Zhang
- Department of Radiology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Anshun Zhao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| |
Collapse
|
5
|
Luo P, Feng X, Deng R, Wang F, Zhang Y, Li X, Zhang M, Wan Z, Xiang AP, Xia K, Gao Y, Deng C. An autofluorescence-based isolation of Leydig cells for testosterone deficiency treatment. Mol Cell Endocrinol 2021; 535:111389. [PMID: 34229003 DOI: 10.1016/j.mce.2021.111389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
Effective procedures for the purification of Leydig cells (LCs) can facilitate functional studies and transplantation therapies. However, current methods to purify LCs from testes are still far from satisfactory. Here, we found that testicular autofluorescence existed in the interstitium along with the gradual maturation of LCs from birth to adulthood. These autofluorescent cells were further isolated by fluorescence-activated cell sorting (FACS) and determined to be composed of LCs and macrophages. To further purify LCs, we combined two fluorescence channels of FACS and successfully separated LCs and macrophages. Of note, we confirmed that the obtained LCs not only possessed high purity, viability and quantity but also had intact steroidogenic activity and excellent responsiveness to luteinizing hormone. Moreover, subcutaneous transplantation of isolated LCs could alleviate the symptoms of testosterone deficiency in castrated mice. In summary, we established an effective autofluorescence-based method for isolating LCs. This method will aid in the future success of using LCs for basic and translational applications.
Collapse
Affiliation(s)
- Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Department of Organ Transplantation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fulin Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yadong Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangping Li
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi Wan
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Zhong Y, Li X, Wang F, Wang S, Wang X, Tian X, Bai S, Miao D, Fan J. Emerging Potential of Exosomes on Adipogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:649552. [PMID: 34239869 PMCID: PMC8258133 DOI: 10.3389/fcell.2021.649552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
The mesenchymal stem cells have multidirectional differentiation potential and can differentiate into adipocytes, osteoblasts, cartilage tissue, muscle cells and so on. The adipogenic differentiation of mesenchymal stem cells is of great significance for the construction of tissue-engineered fat and the treatment of soft tissue defects. Exosomes are nanoscale vesicles secreted by cells and widely exist in body fluids. They are mainly involved in cell communication processes and transferring cargo contents to recipient cells. In addition, exosomes can also promote tissue and organ regeneration. Recent studies have shown that various exosomes can influence the adipogenic differentiation of stem cells. In this review, the effects of exosomes on stem cell differentiation, especially on adipogenic differentiation, will be discussed, and the mechanisms and conclusions will be drawn. The main purpose of studying the role of these exosomes is to understand more comprehensively the influencing factors existing in the process of stem cell differentiation into adipocytes and provide a new idea in adipose tissue engineering research.
Collapse
Affiliation(s)
- Yuxuan Zhong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Di Miao
- China Medical University-The Queen's University of Belfast Joint College-Combination, Shenyang, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Yang Y, Zhao Y, Zhang L, Zhang F, Li L. The Application of Mesenchymal Stem Cells in the Treatment of Liver Diseases: Mechanism, Efficacy, and Safety Issues. Front Med (Lausanne) 2021; 8:655268. [PMID: 34136500 PMCID: PMC8200416 DOI: 10.3389/fmed.2021.655268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a novel treatment for liver diseases due to the roles of MSCs in regeneration, fibrosis inhibition and immune regulation. However, the mechanisms are still not completely understood. Despite the significant efficacy of MSC therapy in animal models and preliminary clinical trials, issues remain. The efficacy and safety of MSC-based therapy in the treatment of liver diseases remains a challenging issue that requires more investigation. This article reviews recent studies on the mechanisms of MSCs in liver diseases and the associated challenges and suggests potential future applications.
Collapse
Affiliation(s)
- Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|