1
|
Jafarzadeh A, Jafarzadeh Z, Nemati M, Yoshimura A. The Interplay Between Helicobacter pylori and Suppressors of Cytokine Signaling (SOCS) Molecules in the Development of Gastric Cancer and Induction of Immune Response. Helicobacter 2024; 29:e13105. [PMID: 38924222 DOI: 10.1111/hel.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
3
|
Yang X, Tian M, Lin Y, Li L, Sun X, Zhang Z, Kang M, Lin J. Characterization of the Roles of Suppressor of Cytokine Signaling-3 in Esophageal Carcinoma. Hum Gene Ther 2023; 34:495-517. [PMID: 36932739 DOI: 10.1089/hum.2022.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
This study was aimed to analyze the diagnostic, therapeutic, and prognostic value of the suppressor of cytokine signaling 3 (SOCS3) in pancancer, especially in esophageal carcinoma (ESCA), and investigate the role of SOCS3 in the tumorigenesis and progression of ESCA. We used a variety of bioinformatics methods to explore the expression of SOCS3 in 33 kinds of cancers and evaluate its potential role in the pathogenesis, prognosis, immune microenvironment, immune evasion, and therapeutic response of cancers. The results indicated that SOCS3 was upregulated in 10 cancers, downregulated in 12 cancers, and upregulated in ESCA. Mutation and amplification were the main causes of abnormal expression of SOCS3 in pancancer. In ESCA, expression of SOCS3 was negatively correlated with methylation. The analysis showed that ESCA patients with low SOCS3 levels had better overall survival. Furthermore, the SOCS3 level was positively related to the ESTIMATE score, immune score, stromal score, and negatively related to tumor purity. In ESCA, a significant association was found between SOCS3 and several immune checkpoint genes. In addition, SOCS3 was associated with sensitivity to 59 drugs. Next, the role of SOCS3 in ESCA was investigated in ECA109, EC9706 cells, and in xenografted mouse model. SOCS3 was confirmed to be upregulated in ESCA cells. Knockdown of SOCS3 decreased the proliferation, migration, and invasion of ESCA cells while increasing apoptosis. Meanwhile, downregulation of SOCS3 activated the nuclear factor kappa-B signaling pathway and inhibited ESCA tumorigenesis in vivo. In conclusion, high SOCS3 expression is closely related to the occurrence and progression of ESCA and can be used as a therapeutic target and prognostic biomarker for ESCA.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Mengyue Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences; Fujian Medical University, Fuzhou, China
| | - Yukang Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Liming Li
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|