1
|
Wang J, Liu X, Fu Y, Zhu B, Zhang J. Mendelian randomization analysis of blood uric acid and risk of preeclampsia: based on GWAS and eQTL data. J Matern Fetal Neonatal Med 2025; 38:2443673. [PMID: 39746786 DOI: 10.1080/14767058.2024.2443673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The causal association between blood uric acid and preeclampsia (Preeclampsia, PE) has not been conclusively established based on the literature reviewed to date. This bi-directional Mendelian randomization study aimed to investigate the bi-directional causal association between blood uric acid concentration and PE at different genetic levels. METHODS Pooled data on preeclampsia (sample size = 82,085) and blood uric acid (sample size = 129,405) were conducted based on publicly available genome-wide association analysis (Genome-Wide Association Study, GWAS) on the East Asian populations regarding preeclampsia and blood uric acid, respectively. We assessed blood uric acid and PE associations using two-sample Mendelian randomization (TSMR) analyses based on GWAS pooled statistics using inverse variance weighted (Inverse variance weighted), MR-Egger, and Weighted median (Weighted median) to examine the association between blood uric acid and pre-eclampsia. Causal relationship between blood uric acid and pre-eclampsia.Cochran's Q statistic was used to quantify the heterogeneity of instrumental variables among other methods. Subsequently, we extracted the expression quantitative trait loci (eQCTL, Expression quantitative trait loci) data corresponding to each gene as the instrumental variables using the genes corresponding to the intersecting instrumental variables of the exposure and the outcome in the respective analyses of the forward and backward TSMR respectively, so as to analyze the genetic causality of the genes with the different forward and backward TSMR methods further. Inverse variance weighted (IVW) was used to analyze the genetic causality of genes with different positive and negative outcomes. RESULTS Genetically determined blood uric acid level IVW method, ratio (OR) 1.30, 95% confidence interval (CI): [0.6, 2.83], p = 0.51 was not risk associated with PE. In addition according to the inverse MR analysis, we found an OR of 0.99, 95% CI [0.99, 1.0], p = 0.999) for PE on blood uric acid level IVW method and no significant heterogeneity in instrumental variables or level polytropy was found. (ii) Although GWAS data suggested no risk association between PE and uric acid, gene association analysis of eQTL data at blood uric acid levels with PE suggested a risk effect of the TP53INP1 gene for PE (IVW, OR = 11.476, 95% CI 2.511-52.452, p = 1.648 × 10-3) and a protective effect of CTSZ (IVW, OR = 0.011, 95% CI 0.001-0.189, p = 1.804 × 10-3), while a risk effect of ETV7 on hyperuricemia was suggested in a genetic association analysis of PE eQTL data with blood uric acid levels (OR = 1.018, 95% CI 1.007-1.029, p = 1.289 × 10-3). CONCLUSION Our MR (Mendelian Randomization) study based on the GWAS database did not support a bidirectional causal effect between blood uric acid levels and PE, whereas MR based on quantitative trait loci suggested that TP53INP1, which affects uric acid levels, has a risk association for PE, whereas CTSZ is protective against preeclampsia. Among the genes affecting PE the ETV7 gene may play a positive role in elevating uric acid levels.
Collapse
Affiliation(s)
- Jiao Wang
- Medical School, Kunming University of Science and Technology, Kunming, China
- Xishui County People's Hospital, Guizhou Province, China
| | - Xiaohu Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Youmou Fu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Baosheng Zhu
- Medical School, Kunming University of Science and Technology, Kunming, China
- Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jinman Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
- Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
2
|
Tossetta G, Fantone S, Procopio AD, Pugnaloni A, Gualtieri AF, Marzioni D. Effects of mineral fibres in an in vitro placental syncytiotrophoblast model. Curr Res Toxicol 2025; 8:100231. [PMID: 40237000 PMCID: PMC11999340 DOI: 10.1016/j.crtox.2025.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
It is known that mineral fibres can be found in placental tissues, but their effect is not known on these tissues. BeWo in vitro model of syncytiotrophoblast, the outer layer of maternal-foetal barrier, is necessary to understand if mineral fibres can alter placental cell turnover and consequently to influence the outcome of pregnancy. We performed in vitro experiments using chrysotile UICC (UICC), chrysotile Valmalenco (VM) and erionite (ERI) to investigate the potential cytotoxic effects of these mineral fibres on BeWo cells. We demonstrated that all fibres are toxic while only UICC fibres caused a DNA damage that the cells were not able to repair through RAD51 activity. In addition, we demonstrated that DNA replication is not altered while cyclin D1 showed a significant decrease in VM and UICC suggesting that the cell cycle is altered in G1 phase. Moreover, UICC increased active form of caspase 3 demonstrating that apoptosis can be induced in BeWo cells. We suggest that although morphological changes are not visible in BeWo cells treated with these mineral fibres, DNA damage can lead to altered placenta physiology that can be seen late when the damage at the foetal tissues has already occurred.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | | | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
- IRCCS INRCA, Ancona, Italy
| |
Collapse
|
3
|
Cecati M, Fumarola S, Vaiasicca S, Cianfruglia L, Vignini A, Giannubilo SR, Emanuelli M, Ciavattini A. Preeclampsia as a Study Model for Aging: The Klotho Gene Paradigm. Int J Mol Sci 2025; 26:902. [PMID: 39940672 PMCID: PMC11817256 DOI: 10.3390/ijms26030902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Aging and pregnancy are often considered opposites in a woman's biological timeline. Aging is defined by a gradual decline in the functional capabilities of an organism over its lifetime, while pregnancy is characterized by the presence of the transient placenta, which fosters the cellular fitness necessary to support fetal growth. However, in the context of preeclampsia, pregnancy and aging share common hallmarks, including clinical complications, altered cellular phenotypes, and heightened oxidative stress. Furthermore, women with pregnancies complicated by preeclampsia tend to experience age-related disorders earlier than those with healthy pregnancies. Klotho, a gene discovered fortuitously in 1997 by researchers studying aging mechanisms, is primarily expressed in the kidneys but also to a lesser extent in several other tissues, including the placenta. The Klotho protein is a membrane-bound protein that, upon cleavage by ADAM10/17, is released into the circulation as soluble Klotho (sKlotho) where it plays a role in modulating oxidative stress. This review focuses on the involvement of sKlotho in the development of preeclampsia and age-related disorders, as well as the expression of the recently discovered Mytho gene, which has been associated with skeletal muscle atrophy.
Collapse
Affiliation(s)
- Monia Cecati
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Stefania Fumarola
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (S.V.); (L.C.)
| | - Salvatore Vaiasicca
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (S.V.); (L.C.)
| | - Laura Cianfruglia
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (S.V.); (L.C.)
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica Delle Marche, 60126 Ancona, Italy;
| | - Stefano Raffaele Giannubilo
- Department of Clinical Sciences, Clinic of Obstetrics and Gynaecology, Università Politecnica Delle Marche, 60123 Ancona, Italy;
| | - Monica Emanuelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica Delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Clinic of Obstetrics and Gynaecology, Università Politecnica Delle Marche, 60123 Ancona, Italy;
| |
Collapse
|
4
|
Luo X, Guo X, Chen N, Peng R, Pan C, Li Z, Zhao B, Ji R, Li S. miR-155 mediated regulation of PKG1 and its implications on cell invasion, migration, and apoptosis in preeclampsia through NF-κB pathway. Biol Direct 2024; 19:121. [PMID: 39587640 PMCID: PMC11590512 DOI: 10.1186/s13062-024-00526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Preeclampsia (PE) is a severe pregnancy complication characterized by complex molecular interactions. Understanding these interactions is crucial for developing effective therapeutic strategies. METHODS This study applies a pharmacometabolomics approach to explore the roles of miR-155 and PKG1 in PE, focusing on the regulatory influence of the NF-κB signaling pathway. Blood metabolomic profiles were analyzed, and bioinformatics tools, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization were employed to determine the expression and function of miR-155 and PKG1. Cell invasion, migration, proliferation, and apoptosis assays were conducted to assess miR-155's modulation of PKG1. Additionally, RT-qPCR and WB analysis elucidated NF-κB-mediated regulation mechanisms. RESULTS Our findings indicate significant metabolic alterations associated with miR-155 modulation of PKG1, with NF-κB acting as a critical upstream regulator. The study demonstrates that miR-155 affects cellular functions such as invasion, migration, proliferation, and apoptosis through PKG1 modulation. Furthermore, the NF-κB signaling pathway regulates miR-155 expression, contributing to the pathological processes of PE. CONCLUSION This study provides a proof of concept for using pharmacometabolomics to understand the molecular mechanisms of PE, suggesting new therapeutic targets and advancing personalized medicine approaches. These insights highlight the potential of pharmacometabolomics to complement genomic and transcriptional data in disease characterization and treatment strategies, offering new avenues for therapeutic intervention in PE.
Collapse
Affiliation(s)
- Xiaohua Luo
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Xiaopei Guo
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Ningning Chen
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Rui Peng
- Scientific Research Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ci Pan
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Zhuyin Li
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Bing Zhao
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Ruonan Ji
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Siyu Li
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
5
|
Annesi L, Tossetta G, Borghi C, Piani F. The Role of Xanthine Oxidase in Pregnancy Complications: A Systematic Review. Antioxidants (Basel) 2024; 13:1234. [PMID: 39456486 PMCID: PMC11505381 DOI: 10.3390/antiox13101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Xanthine oxidoreductase (XOR) is an enzyme involved in the oxidation of hypoxanthine and xanthine to uric acid. XOR has two isoforms: xanthine dehydrogenase and xanthine oxidase (XO). XO plays a major role in oxidative stress, causing the formation of reactive oxygen species. In the present study, we aimed to summarize the evidence on the association between XO and pregnancy complications. The PRISMA checklist guided the reporting of the data. We conducted systematic searches in the PubMed and Web of Science databases to identify all human studies investigating XO in pregnancy diseases up to June 2024. A total of 195 references have been identified and 14 studies were included. Most studies focused on women with PE and GD. Overall, all the included studies found a statistically significant increase in maternal, placental, and/or fetal XO levels, activity, or tissue expression in women with pregnancy complications, compared to those with uncomplicated pregnancies. Although promising, the quality and dimension of the included studies do not allow for a definitive answer to the question of whether XO may play a crucial role in pregnancy complications. Future studies are warranted to confirm if XO could represent a prognostic and therapeutic marker in pregnancy complications and their impact on long-term maternal and offspring cardiovascular health.
Collapse
Affiliation(s)
- Lorenzo Annesi
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (L.A.); (C.B.)
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Claudio Borghi
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (L.A.); (C.B.)
| | - Federica Piani
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (L.A.); (C.B.)
| |
Collapse
|
6
|
Doria-Borrell P, Pérez-García V. Understanding the intersection between placental development and cancer: Lessons from the tumor suppressor BAP1. Commun Biol 2024; 7:1053. [PMID: 39191942 PMCID: PMC11349880 DOI: 10.1038/s42003-024-06689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The placenta, a pivotal organ in mammalian reproduction, allows nutrient exchange and hormonal signaling between the mother and the developing fetus. Understanding its molecular intricacies is essential for deciphering normal embryonic development and pathological conditions such as tumorigenesis. Here, we explore the multifaceted role of the tumor suppressor BRCA1-associated protein 1 (BAP1) in cancer and placentation. Initially recognized for its tumor-suppressive properties, BAP1 has emerged as a key regulator at the intersection of tumorigenesis and placental development. BAP1 influences crucial cellular processes such as cell death, proliferation, metabolism, and response to hypoxic conditions. By integrating insights from tumor and developmental biology, we illuminate the complex molecular pathways orchestrated by BAP1. This perspective highlights BAP1's significant impact on both cancer and placental development, and suggests novel therapeutic strategies that could improve outcomes for pregnancy disorders and cancer.
Collapse
Affiliation(s)
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
7
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
8
|
Martins LZ, da Silva MLS, Rodrigues SD, Gomes SEB, Molezini L, Rizzi E, Montenegro MF, Dias-Junior CA. Sodium Nitrite Attenuates Reduced Activity of Vascular Matrix Metalloproteinase-2 and Vascular Hyper-Reactivity and Increased Systolic Blood Pressure Induced by the Placental Ischemia Model of Preeclampsia in Anesthetized Rats. Int J Mol Sci 2023; 24:12818. [PMID: 37628999 PMCID: PMC10454117 DOI: 10.3390/ijms241612818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia is a maternal hypertension disorder associated with vascular dysfunction and fetal and placental growth restrictions. Placental ischemia is suggested as the primary trigger of preeclampsia-associated impairments of both endothelium-derived nitric oxide (NO) and the vascular activity of extracellular matrix metalloproteinase-2 (MMP-2). Reduced uteroplacental perfusion pressure (RUPP) is a placental ischemia model of preeclampsia. Reduction of sodium nitrite to NO may occur during ischemic conditions. However, sodium nitrite effects in the RUPP model of preeclampsia have not yet been investigated. Pregnant rats were divided into four groups: normotensive pregnant rats (Norm-Preg), pregnant rats treated with sodium nitrite (Preg + Nitrite), preeclamptic rats (RUPP), and preeclamptic rats treated with sodium nitrite (RUPP + Nitrite). Maternal blood pressure and fetal and placental parameters were recorded. Vascular function, circulating NO metabolites, and the gelatinolytic activity of vascular MMP-2 were also examined. Sodium nitrite attenuates increased blood pressure, prevents fetal and placental weight loss, counteracts vascular hyper-reactivity, and partially restores NO metabolites and MMP-2 activity. In conclusion, sodium nitrite reduction to NO may occur during RUPP-induced placental ischemia, thereby attenuating increased blood pressure, fetal and placental growth restriction, and vascular hyper-reactivity associated with preeclampsia and possibly restoring NO and MMP-2 activity, which underlie the blood pressure-lowering effects.
Collapse
Affiliation(s)
- Laisla Zanetoni Martins
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Maria Luiza Santos da Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Serginara David Rodrigues
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Sáskia Estela Biasotti Gomes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Laura Molezini
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (L.M.); (E.R.)
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (L.M.); (E.R.)
| | - Marcelo Freitas Montenegro
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden;
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| |
Collapse
|