1
|
Grizon A, Theil S, Callon C, Gerber P, Helinck S, Dugat-Bony E, Bonnarme P, Chassard C. Genetic and technological diversity of Streptococcus thermophilus isolated from the Saint-Nectaire PDO cheese-producing area. Front Microbiol 2023; 14:1245510. [PMID: 38487210 PMCID: PMC10939066 DOI: 10.3389/fmicb.2023.1245510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 03/17/2024] Open
Abstract
Streptococcus thermophilus is of major importance for cheese manufacturing to ensure rapid acidification; however, studies indicate that intensive use of commercial strains leads to the loss of typical characteristics of the products. To strengthen the link between the product and its geographical area and improve the sensory qualities of cheeses, cheese-producing protected designations of origin (PDO) are increasingly interested in the development of specific autochthonous starter cultures. The present study is therefore investigating the genetic and functional diversity of S. thermophilus strains isolated from a local cheese-producing PDO area. Putative S. thermophilus isolates were isolated and identified from milk collected in the Saint-Nectaire cheese-producing PDO area and from commercial starters. Whole genomes of isolates were sequenced, and a comparative analysis based on their pan-genome was carried out. Important functional properties were studied, including acidifying and proteolytic activities. Twenty-two isolates representative of the diversity of the geographical area and four commercial strains were selected for comparison. The resulting phylogenetic trees do not correspond to the geographical distribution of isolates. The clustering based on the pan-genome analysis indicates that isolates are divided into five distinct groups. A Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation of the accessory genes indicates that the accessory gene contents of isolates are involved in different functional categories. High variability in acidifying activities and less diversity in proteolytic activities were also observed. These results indicate that high genetic and functional variabilities of the species S. thermophilus may arise from a small (1,800 km2) geographical area and may be exploited to meet demand for use as autochthonous starters.
Collapse
Affiliation(s)
- Anna Grizon
- UMR545 Fromage, INRAE, VetAgro Sup, Université Clermont Auvergne, Aurillac, France
| | - Sebastien Theil
- UMR545 Fromage, INRAE, VetAgro Sup, Université Clermont Auvergne, Aurillac, France
| | - Cecile Callon
- UMR545 Fromage, INRAE, VetAgro Sup, Université Clermont Auvergne, Aurillac, France
| | | | - Sandra Helinck
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Christophe Chassard
- UMR545 Fromage, INRAE, VetAgro Sup, Université Clermont Auvergne, Aurillac, France
| |
Collapse
|
2
|
Allouche R, Hafeez Z, Papier F, Dary-Mourot A, Genay M, Miclo L. In Vitro Anti-Inflammatory Activity of Peptides Obtained by Tryptic Shaving of Surface Proteins of Streptococcus thermophilus LMD-9. Foods 2022; 11:foods11081157. [PMID: 35454744 PMCID: PMC9030335 DOI: 10.3390/foods11081157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Streptococcus thermophilus, a lactic acid bacterium widely used in the dairy industry, is consumed regularly by a significant proportion of the population. Some strains show in vitro anti-inflammatory activity which is not fully understood. We hypothesized that peptides released from the surface proteins of this bacterium during digestion could be implied in this activity. Consequently, we prepared a peptide hydrolysate by shaving and hydrolysis of surface proteins using trypsin, and the origin of peptides was checked by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Most of the identified peptides originated from bacterial cell surface proteins. The anti-inflammatory activity of peptide hydrolysate was investigated under inflammatory conditions in two cell models. Peptide hydrolysate significantly decreased secretion of pro-inflammatory cytokine IL-8 in lipopolysaccharide (LPS)-stimulated human colon epithelial HT-29 cells. It also reduced the production of pro-inflammatory cytokines IL-8, IL-1β and the protein expression levels of Pro-IL-1β and COX-2 in LPS-stimulated THP-1 macrophages. The results showed that peptides released from bacterial surface proteins by a pancreatic protease could therefore participate in an anti-inflammatory activity of S. thermophilus LMD-9 and could prevent low-grade inflammation.
Collapse
|
3
|
Analysis of the proteolytic system of Streptococcus thermophilus strains CS5, CS9, CS18 and CS20. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Growth, dormancy and lysis: the complex relation of starter culture physiology and cheese flavour formation. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021; 26:molecules26071858. [PMID: 33806095 PMCID: PMC8037685 DOI: 10.3390/molecules26071858] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.
Collapse
|
6
|
Yamamoto E, Watanabe R, Koizumi A, Ishida T, Kimura K. Isolation and characterization of Streptococcus thermophilus possessing prtS gene from raw milk in Japan. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:169-174. [PMID: 32775136 PMCID: PMC7392909 DOI: 10.12938/bmfh.2019-052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/06/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus thermophilus is widely used for producing fermented dairy products such as yogurt and cheese. Some S. thermophilus strains
possessing the cell-wall protease PrtS show high proteolytic activity and fast acidification properties, which are very useful in industrial starters. However, few S.
thermophilus strains possessing the prtS gene have been isolated from the environment. To clarify whether or not S. thermophilus
strains possessing the prtS gene are present in Japan, we isolated S. thermophilus from raw milk collected in Japan from 2011 to 2017 and
investigated the strains for the presence of prtS by PCR. A total of 172 S. thermophilus strains were isolated, and 59 strains were confirmed to
possess prtS. We measured fermentation times of 59 prtS-positive strains in skim milk broth and found that 53 strains showed fast acidification
properties, finishing fermentation within 10 hr. However, the remaining 6 prtS-positive strains showed slow acidification properties, and they had several amino
acid mutations in PrtS compared with fast acidifying S. thermophilus LMD-9 and 4F44. These results demonstrate that S. thermophilus strains
possessing prtS are prevalent in Japan and that some prtS-positive strains could lose their fast acidifying properties through mutations in
PrtS.
Collapse
Affiliation(s)
- Eri Yamamoto
- Food Microbiology Research Laboratories R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Reiko Watanabe
- Food Development Laboratories R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Akiko Koizumi
- Food Microbiology Research Laboratories R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Tatsuya Ishida
- Food Microbiology Research Laboratories R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Katsunori Kimura
- Food Microbiology Research Laboratories R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
7
|
Characterization and pre-industrial validation of Streptococcus thermophilus strains to be used as starter cultures for Crescenza, an Italian soft cheese. Food Microbiol 2020; 92:103599. [PMID: 32950140 DOI: 10.1016/j.fm.2020.103599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022]
Abstract
The aim of this work was to search for new candidate strains to be included in a culture for Crescenza, a rindless soft cheese, today produced mainly at industrial level using selected starter cultures composed of S. thermophilus. Performance testing was applied to 29 pre-selected strains and a scoring approach was developed to identify the most suitable candidates to be employed in Crescenza cheesemaking. Eight S. thermophilus strains fulfilling most of the desired properties (e.g., high phage resistance, fast acidification rate, no growth below 20 °C, NaCl sensibility, no post acidification at 4 °C) were selected. These strains were grouped in pairs to design different starter culture formulations, which were preliminary tested for the production of Crescenza cheeses at laboratory scale. Two couples of binary cultures (designed Phage rotation 1 and Phage rotation 2) were finally designed and used as starters in pilot scale cheesemaking. The combinations, especially those designed in Phage rotation 1, appeared to be suitable for Crescenza production and showed mutual similarity in terms of strain characteristics, technological performance, and cheese quality. The selection method and ranking approach presented in this work may be adapted to other species of LAB showing traits of industrial interest.
Collapse
|
8
|
Markakiou S, Gaspar P, Johansen E, Zeidan AA, Neves AR. Harnessing the metabolic potential of Streptococcus thermophilus for new biotechnological applications. Curr Opin Biotechnol 2020; 61:142-152. [DOI: 10.1016/j.copbio.2019.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 01/07/2023]
|
9
|
Alexandraki V, Kazou M, Blom J, Pot B, Papadimitriou K, Tsakalidou E. Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Front Microbiol 2019; 10:2916. [PMID: 31956321 PMCID: PMC6951406 DOI: 10.3389/fmicb.2019.02916] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Streptococcus thermophilus is a major starter for the dairy industry with great economic importance. In this study we analyzed 23 fully sequenced genomes of S. thermophilus to highlight novel aspects of the evolution, biology and technological properties of this species. Pan/core genome analysis revealed that the species has an important number of conserved genes and that the pan genome is probably going to be closed soon. According to whole genome phylogeny and average nucleotide identity (ANI) analysis, most S. thermophilus strains were grouped in two major clusters (i.e., clusters A and B). More specifically, cluster A includes strains with chromosomes above 1.83 Mbp, while cluster B includes chromosomes below this threshold. This observation suggests that strains belonging to the two clusters may be differentiated by gene gain or gene loss events. Furthermore, certain strains of cluster A could be further subdivided in subgroups, i.e., subgroup I (ASCC 1275, DGCC 7710, KLDS SM, MN-BM-A02, and ND07), II (MN-BM-A01 and MN-ZLW-002), III (LMD-9 and SMQ-301), and IV (APC151 and ND03). In cluster B certain strains formed one distinct subgroup, i.e., subgroup I (CNRZ1066, CS8, EPS, and S9). Clusters and subgroups observed for S. thermophilus indicate the existence of lineages within the species, an observation which was further supported to a variable degree by the distribution and/or the architecture of several genomic traits. These would include exopolysaccharide (EPS) gene clusters, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs)-CRISPR associated (Cas) systems, as well as restriction-modification (R-M) systems and genomic islands (GIs). Of note, the histidine biosynthetic cluster was found present in all cluster A strains (plus strain NCTC12958T) but was absent from all strains in cluster B. Other loci related to lactose/galactose catabolism and urea metabolism, aminopeptidases, the majority of amino acid and peptide transporters, as well as amino acid biosynthetic pathways were found to be conserved in all strains suggesting their central role for the species. Our study highlights the necessity of sequencing and analyzing more S. thermophilus complete genomes to further elucidate important aspects of strain diversity within this starter culture that may be related to its application in the dairy industry.
Collapse
Affiliation(s)
- Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
10
|
Hafeez Z, Cakir-Kiefer C, Lecomte X, Miclo L, Dary-Mourot A. The X-prolyl dipeptidyl-peptidase PepX of Streptococcus thermophilus initially described as intracellular is also responsible for peptidase extracellular activity. J Dairy Sci 2018; 102:113-123. [PMID: 30391182 DOI: 10.3168/jds.2018-14823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022]
Abstract
This study addresses the hypothesis that the extracellular cell-associated X-prolyl dipeptidyl-peptidase activity initially described in Streptococcus thermophilus could be attributable to the intracellular X-prolyl dipeptidyl-peptidase PepX. For this purpose, a PepX-negative mutant of S. thermophilus LMD-9 was constructed by interrupting the pepX gene and named LMD-9-ΔpepX. When cultivated, the S. thermophilus LMD-9 wild type strain grew more rapidly than its ΔpepX mutant counterpart. Thus, the growth rate of the LMD-9-ΔpepX strain was reduced by a factor of 1.5 and 1.6 in milk and LM17 medium (M17 medium supplemented with 2% lactose), respectively. The negative effect of the PepX inactivation on the hydrolysis of β-casomorphin-7 was also observed. Indeed, when incubated with this peptide, the LMD-9-ΔpepX mutant cells were unable to hydrolyze it, whereas this peptide was completely degraded by the S. thermophilus LMD-9 wild type cells. This hydrolysis was not due to leakage of intracellular PepX, as no peptide hydrolysis was highlighted in cell-free filtrate of wild type strain. Therefore, based on these results, it can be presumed that though lacking an export signal, the intracellular PepX might have accessed the β-casomorphin-7 externally, perhaps via its galactose-binding domain-like fold, this domain being known to help enzymes bind to several proteins and substrates. Therefore, the identification of novel distinctive features of the proteolytic system of S. thermophilus will further enhance its credibility as a starter in milk fermentation.
Collapse
Affiliation(s)
- Zeeshan Hafeez
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Céline Cakir-Kiefer
- Université de Lorraine, INRA, Unité de Recherche Animal et Produits Animaux (URAFPA), F-54000, Nancy, France
| | - Xavier Lecomte
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Laurent Miclo
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Annie Dary-Mourot
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France.
| |
Collapse
|
11
|
Microencapsulated Starter Culture During Yoghurt Manufacturing, Effect on Technological Features. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1946-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|