1
|
Motamedi R, Aminzadeh S, Khodayar MJ, Khorsandi L, Salehcheh M. Protective Effects of Zingerone on Oxidative Stress in Doxorubicin-Induced Rat Hepatotoxicity. Rep Biochem Mol Biol 2024; 12:575-585. [PMID: 39086586 PMCID: PMC11288236 DOI: 10.61186/rbmb.12.4.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/17/2024] [Indexed: 08/02/2024]
Abstract
Background Doxorubicin, a commonly utilized anthracycline antibiotic and chemotherapeutic agent, has been associated with hepatotoxicity as an adverse effect. This study aimed to evaluate protective effects of zingerone, a bioactive compound derived from ginger renowned for its antioxidative attributes, on oxidative stress in doxorubicin-induced rat hepatotoxicity. Methods In this experimental study, a total of 48 male Wistar rats were allocated into six distinct groups. The first group received a control treatment of normal saline. The second group was administered an intraperitoneal dose of 20 mg/kg of doxorubicin on day 5. The third group received an oral dose of 40 mg/kg of zingerone for 8 days. The fourth, fifth, and sixth groups were administered zingerone at doses of 10, 20, and 40 mg/kg, respectively, for the same 8-day period. On day 5, all groups, except the control group, received an intraperitoneal injection of doxorubicin. Following a 72-hour interval, the animals were anesthetized, and blood samples were collected to assess serum factors. Moreover, portions of the liver tissue were subjected to histopathological analysis and assessment of oxidative stress parameters. Results The activity levels of serum enzymes, including aspartate transaminase (AST), alanine transaminase (ALT), and liver malondialdehyde (MDA), increased in the doxorubicin group. Conversely, the levels of other parameters such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and glutathione (GSH) decreased. However, the co-administration of zingerone effectively reversed these levels, restoring them back to normal. Conclusions These findings suggest that zingerone, particularly at a high dose, exhibit a hepatoprotective effect in the doxorubicin-induced hepatotoxicity model.
Collapse
Affiliation(s)
- Rezvan Motamedi
- Toxicol Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Soheila Aminzadeh
- Toxicol Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicol, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Javad Khodayar
- Toxicol Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicol, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Salehcheh
- Toxicol Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicol, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Shamsabadi S, Nazer Y, Ghasemi J, Mahzoon E, Baradaran Rahimi V, Ajiboye BO, Askari VR. Promising influences of zingerone against natural and chemical toxins: A comprehensive and mechanistic review. Toxicon 2023; 233:107247. [PMID: 37562703 DOI: 10.1016/j.toxicon.2023.107247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Zingerone is a flavor phytochemical present in ginger, a flowering plant belonging to the Zingiberaceae family used as a condiment and herbal remedy. It possesses anti-inflammatory, antioxidant, and anti-apoptotic properties and also exhibits protective effects against radiation, chemicals, biological toxins, and oxidative stress. The current comprehensive literature review was performed in order to assess the therapeutical and protective properties of zingerone against various chemical and natural toxins by considering the mechanisms of action. Extensive searches were performed on Scopus, Web of Science, PubMed, and Google Scholar databases. Zingerone lessens oxidative stress, inflammation, apoptosis, and oxidative DNA damage by increasing the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPX). It prevents alginate production, which increases the cell's susceptibility to macrophages, serum, and antibiotics and dramatically lowers the generation of proinflammatory cytokines brought on by lipopolysaccharide (LPS). Cytokine production, MAPK, and NF-κB activation are all inhibited dose-dependently by zingerone. Zingerone also reduces 8-OHdG over-expression in the liver tissue and the expression of NADPH oxidase 4 (NOX4), inflammatory cytokines (e.g., IFN-γ, IL-17, IL-6, COX-2, TNF-α, and iNOS mRNA level), decreases macrophage inflammatory protein cytokines and eliminates free radicals. It also suppresses matrix metalloproteinase-2 (MMP-2) and MMP-9 during tumor progression, showing its anti-angiogenic activity. Strong radioprotective properties of zingerone are demonstrated against radiation-induced toxicity. The authors hope this review gives researchers some insight into conducting novel clinical and preclinical studies on pharmaceutical applications and the efficiency of zingerone in cancer treatment, and drug adverse effects.
Collapse
Affiliation(s)
| | - Yazdan Nazer
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ghasemi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Mahzoon
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Basiru O Ajiboye
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria; Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria.
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zingerone Targets Status Epilepticus by Blocking Hippocampal Neurodegeneration via Regulation of Redox Imbalance, Inflammation and Apoptosis. Pharmaceuticals (Basel) 2021; 14:ph14020146. [PMID: 33670383 PMCID: PMC7918711 DOI: 10.3390/ph14020146] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Epilepsy is an intricate neurological disease where the neurons are severely affected, leading to the mortality of millions worldwide. Status epilepticus (SE), induced by lithium chloride (LiCl) and pilocarpine, is the most accepted model for epilepsy. The current work aims to unravel the mechanisms underlying the anti-epileptic efficacy of zingerone (an active ingredient of ginger), which has beneficial pharmacological activities on seizure-induced behavioral, histological, neurochemical, and molecular patterns in mice. Zingerone restored cognitive function by diminishing seizure activity, escape latency, and subsequent hippocampal damage manifested in histology. Seizures are associated with local inflammation, redox imbalance, and neural loss, confirmed by the present study of SE, and was attenuated by zingerone treatment. Nuclear factor-kappa B and its downstream signaling molecules (TNF-α, IL-1β, IL-6, NO, MPO) were activated in the LiCl-and-pilocarpine-induced group leading to inflammatory signaling, which was substantially ameliorated by zingerone treatment. The intrinsic apoptotic process was triggered subsequent to SE, as demonstrated by augmentation of cleaved caspase-3, downregulation of Bcl-2. However, zingerone treatment downregulated caspase-3 and upregulated Bcl-2, increasing cell survival and decreasing hippocampal neural death, deciphering involvement of apoptosis in SE. Therefore, zingerone plays an essential role in neuroprotection, probably by precluding oxidative stress, inflammation, and obstructing the mitochondrial pathway of apoptosis.
Collapse
|
4
|
Amjad E, Sokouti B, Asnaashari S. A hybrid systems biology and systems pharmacology investigation of Zingerone's effects on reconstructed human epidermal tissues. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021; 22:90. [PMID: 36820091 PMCID: PMC8666180 DOI: 10.1186/s43042-021-00204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Background As individuals live longer, elderly populations can be expected to face issues. This pattern urges researchers to investigate the aging concept further to produce successful anti-aging agents. In the current study, the effects of Zingerone (a natural compound) on epidermal tissues were analyzed using a bioinformatics approach. Methods For this purpose, we chose the GEO dataset GSE133338 to carry out the systems biology and systems pharmacology approaches, ranging from identifying the differentially expressed genes to analyzing the gene ontology, determining similar structures of Zingerone and their features (i.e., anti-oxidant, anti-inflammatory, and skin disorders), constructing the gene-chemicals network, analyzing gene-disease relationships, and validating significant genes through the evidence presented in the literature. Results The post-processing of the microarray dataset identified thirteen essential genes among control and Zingerone-treated samples. The procedure revealed various structurally similar chemical and herbal compounds with possible skin-related effects. Additionally, we studied the relationships of differentially expressed genes with skin-related diseases and validated their direct connections with skin disorders the evidence available in the literature. Also, the analysis of the microarray profiling dataset revealed the critical role of interleukins as a part of the cytokines family on skin aging progress. Conclusions Zingerone, and potentially any constituents of Zingerone (e.g., their similar compound scan functionality), can be used as therapeutic agents in managing skin disorders such as skin aging. However, the beneficial effects of Zingerone should be assessed in other models (i.e., human or animal) in future studies.
Collapse
Affiliation(s)
- Elham Amjad
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sokouti
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Kucukler S, Darendelioğlu E, Caglayan C, Ayna A, Yıldırım S, Kandemir FM. Zingerone attenuates vancomycin-induced hepatotoxicity in rats through regulation of oxidative stress, inflammation and apoptosis. Life Sci 2020; 259:118382. [PMID: 32898532 DOI: 10.1016/j.lfs.2020.118382] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 12/20/2022]
Abstract
AIM Vancomycin (VCM) is a glycopeptide antibiotic widely used to treat serious infections caused by methicillin-resistant Staphylococcus aureus and has been associated with some severe side effects such as hepatotoxicity and nephrotoxicity. However, the underlying mechanism of VCM-induced hepatotoxicity is not yet fully understood. Therefore, the current study was designed to evaluate the protective effects of zingerone (Zin) against VCM-induced hepatotoxicity in rats. MATERIALS AND METHODS VCM was intraperitoneally administered at a dose of 200 mg/kg body weight (b.w.) for 7 days alone and in combination with the orally administered Zin (25 and 50 mg/kg b.w). KEY FINDINGS Zin treatment significantly improved VCM-induced hepatic lipid peroxidation, glutathione depletion, reduced antioxidant enzyme (superoxide dismutase, catalase and glutathione peroxidase) activities and liver function markers (aspartate aminotransferase, alkaline phosphatase and alanine aminotransferase). Histopathological integrity and immunohistochemical expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the VCM-induced liver tissue were ameliorated after Zin administration. In addition, Zin reversed the changes in levels and/or activities of inflammatory and apoptotic parameters such as nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), p53, cysteine aspartate specific protease-3 (caspase-3), cysteine aspartate specific protease-8 (caspase-8), cytochrome c, Bcl-2 associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) in the VCM-induced hepatotoxicity. SIGNIFICANCE Collectively, these results reveal probable ameliorative role of Zin against VCM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey.
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey.
| | - Adnan Ayna
- Department of Biochemistry, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
6
|
Modulatory effect of zingerone against cisplatin or γ-irradiation induced hepatotoxicity by molecular targeting regulation. Appl Radiat Isot 2019; 154:108891. [PMID: 31536909 DOI: 10.1016/j.apradiso.2019.108891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
Zingerone (ZO) is an ingredient of ginger (Zingiber officinale) which has different pharmacological properties. The objective of this research was to evaluate the protective effect of ZO against Cisplatin (Cis) or γ-Irradiation (IR)-induced hepatotoxicity in rats. ZO was given orally for consecutive 14 days prior to the treatment with Cis or exposure to IR at 15th day. Animals were sacrificed at the 23rd day. Cis or IR induced a marked increase in MAPK signal transduction as evidenced by increased p38 MAPK, JNK and ErK1/2. CYP2E1 and NADPH oxidase were significantly up-regulated. Inflammatory markers (TLR4, iNOS, COX-2 and MPO) and liver enzymes (AST, ALT and ALP) activities were also increased. Administration of ZO significantly ameliorated the above mentioned parameters.
Collapse
|
7
|
Çağlayan C, Taslimi P, Demir Y, Küçükler S, Kandemir FM, Gulçin İ. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J Biochem Mol Toxicol 2019; 33:e22381. [PMID: 31454121 DOI: 10.1002/jbt.22381] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
Abstract
In this study, it was demonstrated the ameliorative effect of zingerone (ZO) (25 and 50 mg/kg body weight) against vancomycin (VCM) (200 mg/kg body weight) administered to rats on some metabolic enzymes' activities in the lung, liver, kidney, and testis tissues of rats. Forty-two rats were divided into six groups as follows: control, ZO-25, ZO-50, VCM, VCM + ZO-25, and VCM + ZO-50. α-Glycosidase, butyrylcholinesterase, aldose reductase, acetylcholinesterase, paraoxonase-1, and carbonic anhydrase enzyme activities were significantly (P < .05) decreased in VCM group when compared with the control group. ZO, supplied with VCM, significantly activated some of these enzyme in all tissues. The results of this study showed that ZO regulates abnormal increases and decreases in VCM-induced metabolic enzyme activities in all tissues.
Collapse
Affiliation(s)
- Cüneyt Çağlayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
8
|
Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Eser G. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22562-22574. [PMID: 31165450 DOI: 10.1007/s11356-019-05505-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Zingerone (ZO), one of the active components of ginger (Zingiber officinale), is a phenolic alkanone with antioxidant, antiapoptotic, and anti-inflammatory properties. Cisplatin (CP) is a widely used chemotherapeutic drug for solid tumors, but its therapeutic use is limited due to dose-dependent nephrotoxicity. In the present study, we investigated the ameliorative effect of ZO against CP-induced nephrotoxicity. Intraperitoneal administration of single-dose CP (7 mg/kg body weight) on the first day enhanced kidney lipid peroxidation and reduced antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH). CP increased serum urea and creatinine levels and disrupted histological integrity while causing a decrease aquaporin 1 (AQP1) level in the kidney tissues. CP induced inflammatory responses by elevating the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-33 (IL-33) and nuclear factor kappa B (NF-κB), and activities of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, it also caused oxidative DNA damage and activation of apoptotic pathway by increasing of 8-hydroxy-2'-deoxyguanosine (8-OHdG), p53, cysteine aspartate-specific protease-3 (caspase-3), and Bcl-2-associated x protein (bax) while decreasing B cell lymphoma-2 (Bcl-2). However, treatment with ZO at a dose of 25 and 50 mg/kg b.wt. for 7 days significantly decreased oxidative stress, apoptosis, inflammation, and histopathological alterations while increased AQP1 levels in the kidney tissue. The results of the current study suggested that ZO as an effective natural product attenuates CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Gizem Eser
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
9
|
Rehman MU, Rashid SM, Rasool S, Shakeel S, Ahmad B, Ahmad SB, Madkhali H, Ganaie MA, Majid S, Bhat SA. Zingerone (4-(4-hydroxy-3-methylphenyl)butan-2-one) ameliorates renal function via controlling oxidative burst and inflammation in experimental diabetic nephropathy. Arch Physiol Biochem 2019. [PMID: 29537332 DOI: 10.1080/13813455.2018.1448422] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of diabetic nephropathy (DN) is directly linked to oxidative stress and inflammation. In this context, inflammatory and oxidative markers have gained much attention as targets for therapeutic intervention. We studied the effect of zingerone in a streptozotocin/high fat diet (STZ/HFD)-induced type 2 diabetic Wistar rat model. Zingerone also known as vanillyl acetone is a pharmacologically active compound present usually in dry ginger. STZ/HFD caused excessive increase in ROS and inflammation in experimental animals. The treatment with zingerone markedly abrogated ROS levels, inhibited the NF-кB activation and considerably reduced level of other downstream inflammatory molecules (TNF-α, IL-6, IL-1β), furthermore, zingerone treatment improved renal functioning by significantly decreasing the levels of kidney toxicity markers KIM-1, BUN, creatinine, and LDH and suppressed TGF-β. Collectively, these findings indicate that zingerone treatment improved renal function by anti-hyperglycaemic, anti-oxidant, and anti-inflammatory effects, suggesting the efficacy of zingerone in the treatment of DN.
Collapse
Affiliation(s)
- Muneeb U Rehman
- a Molecular Biology Lab, Division of Veterinary Biochemistry , Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K) , Srinagar , India
| | - Shahzada Mudasir Rashid
- a Molecular Biology Lab, Division of Veterinary Biochemistry , Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K) , Srinagar , India
| | - Saiema Rasool
- b Department of Forest ManagementForest Biotech Lab , Universiti Putra Malaysia , Serdang , Malaysia
| | - Sheeba Shakeel
- c Department of Pharmaceutical Sciences , University of Kashmir , Srinagar , India
| | - Bilal Ahmad
- a Molecular Biology Lab, Division of Veterinary Biochemistry , Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K) , Srinagar , India
| | - Sheikh Bilal Ahmad
- a Molecular Biology Lab, Division of Veterinary Biochemistry , Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K) , Srinagar , India
| | - Hassan Madkhali
- d Department of Pharmacology, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-Kharj , Kingdom of Saudi Arabia
| | - Majid Ahmad Ganaie
- d Department of Pharmacology, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-Kharj , Kingdom of Saudi Arabia
| | - Sabiya Majid
- e Department of Biochemistry , Govt. Medical College , Srinagar , India
| | | |
Collapse
|
10
|
Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Mahamadu A, Dortbudak MB. Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomed Pharmacother 2018; 105:981-991. [DOI: 10.1016/j.biopha.2018.06.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
|
11
|
Zingerone ameliorates cisplatin‐induced ovarian and uterine toxicity via suppression of sex hormone imbalances, oxidative stress, inflammation and apoptosis in female wistar rats. Biomed Pharmacother 2018; 102:517-530. [PMID: 29587238 DOI: 10.1016/j.biopha.2018.03.119] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 11/17/2022] Open
|
12
|
Abozaid OAR, Moawed FSM, Farrag MA, Abdel Aziz AAA. 4-(4-Hydroxy-3-methoxyphenyl)-2-butanone modulates redox signal in gamma-irradiation-induced nephrotoxicity in rats. Free Radic Res 2017; 51:943-953. [DOI: 10.1080/10715762.2017.1395025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Omayma A. R. Abozaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Fatma S. M. Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A. Farrag
- Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | |
Collapse
|