1
|
Roth JH, Ward VCA. Production of Astaxanthin Using CBFD1/HFBD1 from Adonis aestivalis and the Isopentenol Utilization Pathway in Escherichia coli. Bioengineering (Basel) 2023; 10:1033. [PMID: 37760135 PMCID: PMC10525928 DOI: 10.3390/bioengineering10091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Astaxanthin is a powerful antioxidant and is used extensively as an animal feed additive and nutraceutical product. Here, we report the use of the β-carotene hydroxylase (CBFD1) and the β-carotene ketolase (HBFD1) from Adonis aestivalis, a flowering plant, to produce astaxanthin in E. coli equipped with the P. agglomerans β-carotene pathway and an over-expressed 4-methylerythritol-phosphate (MEP) pathway or the isopentenol utilization pathway (IUP). Introduction of the over-expressed MEP pathway and the IUP resulted in a 3.2-fold higher carotenoid content in LB media at 36 h post-induction compared to the strain containing only the endogenous MEP. However, in M9 minimal media, the IUP pathway dramatically outperformed the over-expressed MEP pathway with an 11-fold increase in total carotenoids produced. The final construct split the large operon into two smaller operons, both with a T7 promoter. This resulted in slightly lower productivity (70.0 ± 8.1 µg/g·h vs. 53.5 ± 3.8 µg/g·h) compared to the original constructs but resulted in the highest proportion of astaxanthin in the extracted carotenoids (73.5 ± 0.2%).
Collapse
Affiliation(s)
| | - Valerie C. A. Ward
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Li M, Zhou P, Chen M, Yu H, Ye L. Spatiotemporal Regulation of Astaxanthin Synthesis in S. cerevisiae. ACS Synth Biol 2022; 11:2636-2649. [PMID: 35914247 DOI: 10.1021/acssynbio.2c00044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a high-valued antioxidant, astaxanthin biosynthesis using microbial cell factories has attracted increasing attention. However, its lipophilic nature conflicts with the limited storage capacity for lipophilic substances of model microorganisms such as Saccharomyces cerevisiae. Expansion of lipid droplets by enhancing lipid synthesis provides more storage room while diverting the metabolic flux from the target pathway. Therefore, proper spatial regulation is required. In this study, a library of genes related to lipid metabolism were screened using the trifunctional CRISPR system, identifying opi3 and hrd1 as new engineering targets to promote astaxanthin synthesis by moderately rather than excessively upregulating lipid synthesis. The astaxanthin yield reached 9.79 mg/g DCW after lipid engineering and was further improved to 10.21 mg/g DCW by balancing the expression of β-carotene hydroxylase and ketolase. Finally, by combining spatial regulation through lipid droplet engineering and temporal regulation via temperature-responsive pathway expression, 446.4 mg/L astaxanthin was produced in fed-batch fermentation.
Collapse
Affiliation(s)
- Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Mingkai Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
3
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
4
|
Liu M, Yang Y, Li L, Ma Y, Huang J, Ye J. Engineering Sphingobium sp. to Accumulate Various Carotenoids Using Agro-Industrial Byproducts. Front Bioeng Biotechnol 2021; 9:784559. [PMID: 34805130 PMCID: PMC8600064 DOI: 10.3389/fbioe.2021.784559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Carotenoids represent the most abundant lipid-soluble phytochemicals that have been shown to exhibit benefits for nutrition and health. The production of natural carotenoids is not yet cost effective to compete with chemically synthetic ones. Therefore, the demand for natural carotenoids and improved efficiency of carotenoid biosynthesis has driven the investigation of metabolic engineering of native carotenoid producers. In this study, a new Sphingobium sp. was isolated, and it was found that it could use a variety of agro-industrial byproducts like soybean meal, okara, and corn steep liquor to accumulate large amounts of nostoxanthin. Then we tailored it into three mutated strains that instead specifically accumulated ∼5 mg/g of CDW of phytoene, lycopene, and zeaxanthin due to the loss-of-function of the specific enzyme. A high-efficiency targeted engineering carotenoid synthesis platform was constructed in Escherichia coli for identifying the functional roles of candidate genes of carotenoid biosynthetic pathway in Sphingobium sp. To further prolong the metabolic pathway, we engineered the Sphingobium sp. to produce high-titer astaxanthin (10 mg/g of DCW) through balance in the key enzymes β-carotene ketolase (BKT) and β-carotene hydroxylase (CHY). Our study provided more biosynthesis components for bioengineering of carotenoids and highlights the potential of the industrially important bacterium for production of various natural carotenoids.
Collapse
Affiliation(s)
- Mengmeng Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yang Yang
- Qingdao Eighth People's Hospital, Qingdao, China
| | - Li Li
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Yan Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Junchao Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jingrun Ye
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Abdollahi S, Morowvat MH, Savardashtaki A, Irajie C, Najafipour S, Ghasemi Y. Evaluating Five Escherichia coli Derivative Strains as a Platform for Arginine Deiminase Overproduction. Recent Pat Biotechnol 2021; 16:174-183. [PMID: 34809551 DOI: 10.2174/1872208315666211122114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 11/22/2022]
Abstract
AIMS This study attempted to evaluate the five host strains, including BL21 (DE3), Rosetta (DE3), DH5α, XL1-BLUE, and SHuffle, in terms of arginine deiminase (ADI) production and enzyme activity. BACKGROUND Escherichia coli is one of the most preferred host microorganisms for the production of recombinant proteins due to its well-characterized genome, availability of various expression vectors, and host strains. Choosing a proper host strain for the overproduction of a desired recombinant protein is very important because of the diversity of genetically modified expression strains. Various E. coli cells have been examined in different patent applications. METHOD ADI was chosen as a bacterial enzyme that degrades L-arginine. It is effective in the treatment of some types of human cancers like melanoma and hepatocellular carcinoma (HCC), which are arginine-auxotrophic. Five mentioned E. coli strains were cultivated. The pET-3a was used as the expression vector. The competent E. coli cells were obtained through the CaCl2 method. It was then transformed with the construct of pET3a-ADI using the heat shock strategy. The ADI production levels were examined by 10% SDS-PAGE analysis. The ability of host strains for the expression of the requested recombinant protein was compared. The enzymatic activity of the obtained recombinant ADI from each studied strain was assessed by a colorimetric 96-well microtiter plate assay. RESULT All the five strains exhibited a significant band at 46 kDa. BL21 (DE3) produced the highest amount of ADI protein, followed by Rosetta (DE3). The following activity assay showed that ADI from BL21 (DE3) and Rosetta (DE3) had the most activity. CONCLUSION There are some genetic and metabolic differences among the various E. coli strains, leading to differences in the amount of recombinant protein production. The results of this study can be used for the efficacy evaluation of the five studied strains for the production of similar pharmaceutical enzymes. The strains also could be analyzed in terms of proteomics.
Collapse
Affiliation(s)
- Sara Abdollahi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| | - Mohammad Hossein Morowvat
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| | - Sohrab Najafipour
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, P.O. Box 74616-86688, Fasa. Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| |
Collapse
|
6
|
Rodríguez-Sifuentes L, Marszalek JE, Hernández-Carbajal G, Chuck-Hernández C. Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.601483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Astaxanthin (ASX) is a xanthophyll pigment considered as a nutraceutical with high antioxidant activity. Several clinical trials have shown the multiple health benefits of this molecule; therefore, it has various pharmaceutical industry applications. Commercial astaxanthin can be produced by chemical synthesis or through biosynthesis within different microorganisms. The molecule produced by the microorganisms is highly preferred due to its zero toxicity and superior therapeutic properties. However, the biotechnological production of the xanthophyll is not competitive against the chemical synthesis, since the downstream process may represent 70–80% of the process production cost. These operations denote then an opportunity to optimize the process and make this alternative more competitive. Since ASX is produced intracellularly by the microorganisms, high investment and high operational costs, like centrifugation and bead milling or high-pressure homogenization, are mainly used. In cell recovery, flocculation and flotation may represent low energy demanding techniques, whereas, after cell disruption, an efficient extraction technique is necessary to extract the highest percentage of ASX produced by the cell. Solvent extraction is the traditional method, but large-scale ASX production has adopted supercritical CO2 (SC-CO2), an efficient and environmentally friendly technology. On the other hand, assisted technologies are extensively reported since the cell disruption, and ASX extraction can be carried out in a single step. Because a high-purity product is required in pharmaceuticals and nutraceutical applications, the use of chromatography is necessary for the downstream process. Traditionally liquid-solid chromatography techniques are applied; however, the recent emergence of liquid-liquid chromatography like high-speed countercurrent chromatography (HSCCC) coupled with liquid-solid chromatography allows high productivity and purity up to 99% of ASX. Additionally, the use of SC-CO2, coupled with two-dimensional chromatography, is very promising. Finally, the purified ASX needs to be formulated to ensure its stability and bioavailability; thus, encapsulation is widely employed. In this review, we focus on the processes of cell recovery, cell disruption, drying, extraction, purification, and formulation of ASX mainly produced in Haematococcus pluvialis, Phaffia rhodozyma, and Paracoccus carotinifaciens. We discuss the current technologies that are being developed to make downstream operations more efficient and competitive in the biotechnological production process of this carotenoid.
Collapse
|
7
|
Liu M, Sandmann G, Chen F, Huang J. Enhanced Coproduction of Cell-Bound Zeaxanthin and Secreted Exopolysaccharides by Sphingobium sp. via Metabolic Engineering and Optimized Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12228-12236. [PMID: 31638826 DOI: 10.1021/acs.jafc.9b05342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zeaxanthin is a value-added carotenoid with wide applications. This study aims to manipulate a generally recognized as safe and carotenoid-producing bacterium, Sphingobium sp., for enhanced production of zeaxanthin and exopolysaccharides. First, whole-genome sequencing and analysis of pathway genes were applied to define the carotenoid pathway in Sphingobium sp. Second, a Sphingobium transformation system was established to engineer metabolite flux into zeaxanthin. By a combination of chemical mutagenesis and removal of bottlenecks of carotenoid biosynthesis via overexpression of three rate-limiting enzymes, the genetically modified Sphingobium DIZ strain produced 21.26 mg/g dry cell weight of zeaxanthin, which was about 4-fold higher than the wild type. Upon optimization of culture conditions, the DIZ strain produced 479.5 mg/L of zeaxanthin with the productivity of 4.99 mg/L/h and 21.9 g/L of exopolysaccharides using a fed-batch fermentation strategy. This study represents the first genetic manipulation of Sphingobium sp., a biotechnologically important bacterium, for high-yield production of value-added metabolites.
Collapse
Affiliation(s)
- Mengmeng Liu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Gerhard Sandmann
- Institute of Molecular Bioscience , J.W. Goethe Universitat , Max von Laue Str. 9 , Frankfurt 60438 , Germany
| | - Feng Chen
- Institute for Advanced Study , Shenzhen University , Shenzhen 518060 , People's Republic of China
| | - Junchao Huang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| |
Collapse
|
8
|
Fang N, Wang C, Liu X, Zhao X, Liu Y, Liu X, Du Y, Zhang Z, Zhang H. De novo synthesis of astaxanthin: From organisms to genes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Park SY, Binkley RM, Kim WJ, Lee MH, Lee SY. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab Eng 2018; 49:105-115. [DOI: 10.1016/j.ymben.2018.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|