1
|
Wang H, Zhang W, Liu J, Gao J, Fang LE, Liu Z, Xia B, Fan X, Li C, Lu Q, Qian A. NF-κB and FosB mediate inflammation and oxidative stress in the blast lung injury of rats exposed to shock waves. Acta Biochim Biophys Sin (Shanghai) 2021; 53:283-293. [PMID: 33677486 DOI: 10.1093/abbs/gmaa179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Blast lung injury (BLI) is the major cause of death in explosion-derived shock waves; however, the mechanisms of BLI are not well understood. To identify the time-dependent manner of BLI, a model of lung injury of rats induced by shock waves was established by a fuel air explosive. The model was evaluated by hematoxylin and eosin staining and pathological score. The inflammation and oxidative stress of lung injury were also investigated. The pathological scores of rats' lung injury at 2 h, 24 h, 3 days, and 7 days post-blast were 9.75±2.96, 13.00±1.85, 8.50±1.51, and 4.00±1.41, respectively, which were significantly increased compared with those in the control group (1.13±0.64; P<0.05). The respiratory frequency and pause were increased significantly, while minute expiratory volume, inspiratory time, and inspiratory peak flow rate were decreased in a time-dependent manner at 2 and 24 h post-blast compared with those in the control group. In addition, the expressions of inflammatory factors such as interleukin (IL)-6, IL-8, FosB, and NF-κB were increased significantly at 2 h and peaked at 24 h, which gradually decreased after 3 days and returned to normal in 2 weeks. The levels of total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase were significantly decreased 24 h after the shock wave blast. Conversely, the malondialdehyde level reached the peak at 24 h. These results indicated that inflammatory and oxidative stress induced by shock waves changed significantly in a time-dependent manner, which may be the important factors and novel therapeutic targets for the treatment of BLI.
Collapse
Affiliation(s)
- Hong Wang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jinren Liu
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Junhong Gao
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - L e Fang
- Department of Clinical Laboratory, 521 Hospital of Ordnance Industry, Xi’an 710065, China
| | - Zhiyong Liu
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Baoqing Xia
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Xiaolin Fan
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Cunzhi Li
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Qing Lu
- Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi’an 710065, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
2
|
Herrmann J, Tawhai MH, Kaczka DW. Computational Modeling of Primary Blast Lung Injury: Implications for Ventilator Management. Mil Med 2019; 184:273-281. [PMID: 30901433 DOI: 10.1093/milmed/usy305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 01/02/2023] Open
Abstract
Primary blast lung injury (PBLI) caused by exposure to high-intensity pressure waves is associated with parenchymal tissue injury and severe ventilation-perfusion mismatch. Although supportive ventilation is often required in patients with PBLI, maldistribution of gas flow in mechanically heterogeneous lungs may lead to further injury due to increased parenchymal strain and strain rate, which are difficult to predict in vivo. In this study, we developed a computational lung model with mechanical properties consistent with healthy and PBLI conditions. PBLI conditions were simulated with bilateral derecruitment and increased perihilar tissue stiffness. As a result of these tissue abnormalities, airway flow was heterogeneously distributed in the model under PBLI conditions, during both conventional mechanical ventilation (CMV) and high-frequency oscillatory ventilation. PBLI conditions resulted in over three-fold higher parenchymal strains compared to the healthy condition during CMV, with flow distributed according to regional tissue stiffness. During high-frequency oscillatory ventilation, flow distribution became increasingly heterogeneous and frequency-dependent. We conclude that the distribution and rate of parenchymal distension during mechanical ventilation depend on PBLI severity as well as ventilatory modality. These simulations may allow realistic assessment of the risks associated with ventilator-induced lung injury following PBLI, and facilitate the development of alternative lung-protective ventilation modalities.
Collapse
Affiliation(s)
- Jacob Herrmann
- Department of Anesthesia, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds St, Grafton, Auckland 1010, New Zealand
| | - David W Kaczka
- Department of Anesthesia, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA.,Department of Radiology, University of Iowa Hospitals and Clinics, 3970 John Pappajohn Pavilion, 200 Hawkins Dr, Iowa City, IA
| |
Collapse
|