1
|
Rahaie Z, Rabiee HR, Alinejad-Rokny H. DeepGenePrior: A deep learning model for prioritizing genes affected by copy number variants. PLoS Comput Biol 2023; 19:e1011249. [PMID: 37486921 PMCID: PMC10399873 DOI: 10.1371/journal.pcbi.1011249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/03/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
The genetic etiology of brain disorders is highly heterogeneous, characterized by abnormalities in the development of the central nervous system that lead to diminished physical or intellectual capabilities. The process of determining which gene drives disease, known as "gene prioritization," is not entirely understood. Genome-wide searches for gene-disease associations are still underdeveloped due to reliance on previous discoveries and evidence sources with false positive or negative relations. This paper introduces DeepGenePrior, a model based on deep neural networks that prioritizes candidate genes in genetic diseases. Using the well-studied Variational AutoEncoder (VAE), we developed a score to measure the impact of genes on target diseases. Unlike other methods that use prior data to select candidate genes, based on the "guilt by association" principle and auxiliary data sources like protein networks, our study exclusively employs copy number variants (CNVs) for gene prioritization. By analyzing CNVs from 74,811 individuals with autism, schizophrenia, and developmental delay, we identified genes that best distinguish cases from controls. Our findings indicate a 12% increase in fold enrichment in brain-expressed genes compared to previous studies and a 15% increase in genes associated with mouse nervous system phenotypes. Furthermore, we identified common deletions in ZDHHC8, DGCR5, and CATG00000022283 among the top genes related to all three disorders, suggesting a common etiology among these clinically distinct conditions. DeepGenePrior is publicly available online at http://git.dml.ir/z_rahaie/DGP to address obstacles in existing gene prioritization studies identifying candidate genes.
Collapse
Affiliation(s)
- Zahra Rahaie
- BCB Group, DML, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid R. Rabiee
- BCB Group, DML, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid Alinejad-Rokny
- UNSW Biomedical Machine Learning Lab (BML), the Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
| |
Collapse
|
2
|
Xiang J, Meng X, Zhao Y, Wu FX, Li M. HyMM: hybrid method for disease-gene prediction by integrating multiscale module structure. Brief Bioinform 2022; 23:6547263. [PMID: 35275996 DOI: 10.1093/bib/bbac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 02/13/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Identifying disease-related genes is an important issue in computational biology. Module structure widely exists in biomolecule networks, and complex diseases are usually thought to be caused by perturbations of local neighborhoods in the networks, which can provide useful insights for the study of disease-related genes. However, the mining and effective utilization of the module structure is still challenging in such issues as a disease gene prediction. RESULTS We propose a hybrid disease-gene prediction method integrating multiscale module structure (HyMM), which can utilize multiscale information from local to global structure to more effectively predict disease-related genes. HyMM extracts module partitions from local to global scales by multiscale modularity optimization with exponential sampling, and estimates the disease relatedness of genes in partitions by the abundance of disease-related genes within modules. Then, a probabilistic model for integration of gene rankings is designed in order to integrate multiple predictions derived from multiscale module partitions and network propagation, and a parameter estimation strategy based on functional information is proposed to further enhance HyMM's predictive power. By a series of experiments, we reveal the importance of module partitions at different scales, and verify the stable and good performance of HyMM compared with eight other state-of-the-arts and its further performance improvement derived from the parameter estimation. CONCLUSIONS The results confirm that HyMM is an effective framework for integrating multiscale module structure to enhance the ability to predict disease-related genes, which may provide useful insights for the study of the multiscale module structure and its application in such issues as a disease-gene prediction.
Collapse
Affiliation(s)
- Ju Xiang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China; Department of Basic Medical Sciences & Academician Workstation, Changsha Medical University, Changsha, Hunan 410219, China
| | - Xiangmao Meng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yichao Zhao
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Elgart M, Redline S, Sofer T. Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research. Neurotherapeutics 2021; 18:228-243. [PMID: 33829409 PMCID: PMC8116376 DOI: 10.1007/s13311-021-01014-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.
Collapse
Affiliation(s)
- Michael Elgart
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
4
|
Nicholls HL, John CR, Watson DS, Munroe PB, Barnes MR, Cabrera CP. Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci. Front Genet 2020; 11:350. [PMID: 32351543 PMCID: PMC7174742 DOI: 10.3389/fgene.2020.00350] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact.
Collapse
Affiliation(s)
- Hannah L. Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christopher R. John
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David S. Watson
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Oxford Internet Institute, University of Oxford, Oxford, United Kingdom
| | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael R. Barnes
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
| | - Claudia P. Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Pashazadeh A, Navimipour NJ. Big data handling mechanisms in the healthcare applications: A comprehensive and systematic literature review. J Biomed Inform 2018; 82:47-62. [PMID: 29655946 DOI: 10.1016/j.jbi.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/19/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
Healthcare provides many services such as diagnosing, treatment, prevention of diseases, illnesses, injuries, and other physical and mental disorders. Large-scale distributed data processing applications in healthcare as a basic concept operates on large amounts of data. Therefore, big data application functions are the main part of healthcare operations, but there was not any comprehensive and systematic survey about studying and evaluating the important techniques in this field. Therefore, this paper aims at providing the comprehensive, detailed, and systematic study of the state-of-the-art mechanisms in the big data related to healthcare applications in five categories, including machine learning, cloud-based, heuristic-based, agent-based, and hybrid mechanisms. Also, this paper displayed a systematic literature review (SLR) of the big data applications in the healthcare literature up to the end of 2016. Initially, 205 papers were identified, but a paper selection process reduced the number of papers to 29 important studies.
Collapse
Affiliation(s)
- Asma Pashazadeh
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nima Jafari Navimipour
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|