1
|
Fellenberg AK, Luchese CL, Marcilio NR, Tessaro IC. Supported carbon membranes using poly(ether sulfone) precursor. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0721-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Guan W, Dai Y, Dong C, Yang X, Xi Y. Zeolite imidazolate framework (ZIF)‐based mixed matrix membranes for CO
2
separation: A review. J Appl Polym Sci 2020. [DOI: 10.1002/app.48968] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Weixin Guan
- School of Chemical Engineering and TechnologyXi'an Jiaotong University Xi'an, 710049 Shaanxi China
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| | - Yan Dai
- School of Chemical Engineering and TechnologyXi'an Jiaotong University Xi'an, 710049 Shaanxi China
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| | - Chenyuan Dong
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| | - Xiaochen Yang
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| | - Yuan Xi
- Panjin Institute of Industrial TechnologySchool of Chemical Engineering, Dalian University of Technology Panjin 124221 Liaoning China
| |
Collapse
|
3
|
|
4
|
Kardani R, Asghari M, Mohammadi T, Afsari M. Effects of nanofillers on the characteristics and performance of PEBA-based mixed matrix membranes. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes (MMMs) with superior structural and functional properties provide an interesting approach to enhance the separation properties of polymer membranes. As a matter of fact, MMMs combine the advantages of both components; polymeric continuous phase and nanoparticle dispersed phase. Generally, the separation performance of polymeric membranes suffers from an upper-performance limit. Hence, the incorporation of nanoparticles helps to overcome such limitations. Block copolymers such as poly(ether-block-amide) (PEBA) composed of immiscible soft ether segments as well as hard amide segments have been shown as excellent materials for the synthesis of membranes. Consequently, PEBA membranes have been extensively used in scientific research and industrial processes. It is thus aimed to provide an overview of PEBA MMMs. This review is especially devoted to summarizing the effects of nanoparticle loading on PEBA performance and properties such as selectivity, permeability, thermal and mechanical properties, and others. In addition, the preparation techniques of PEBA MMMs and solvent selection are discussed. This article also discusses the many types of nanoparticles incorporated into PEBA membranes. Furthermore, the future direction in PEBA MMMs research for separation processes is briefly predicted.
Collapse
Affiliation(s)
- Rokhsare Kardani
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| | - Morteza Asghari
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
- Energy Research Institute, University of Kashan , Kashan , Iran
| | - Toraj Mohammadi
- Research and Technology Centre for Membrane Processes, Iran University of Science and Technology , Tehran , Iran
| | - Morteza Afsari
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| |
Collapse
|