1
|
Shi J, Zhu J, Yang Y, Qiao S, Dai H, Chen H, Ma L, Zhang Y, Wang H. Lipase etching effects-induced interaction between betanin nanocomplexes and polylactic acid and its 3D printing for food packaging. Food Chem 2025; 464:141636. [PMID: 39454441 DOI: 10.1016/j.foodchem.2024.141636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Etching effects by lipase on polylactic acid (PLA) could induce the exposure of active sites and promote the attachment of betanin nanocomplexes (BR-Ch) to obtain red color. 3D printing, regarded as emerging, innovative packaging fabrication technique, was applied to potentially develop creative, red PLA products for food application. BR-Ch was prepared based on betanin and nano chitin via electrostatic interaction and hydrogen bonding, obtaining nanocomplexes with excellent thermal stability. Pre-treatments mattered greatly in PLA functionalization, and especially, lipase pre-treatment 30 min promoted BR-Ch modification on PLA. Final PLA exhibited excellent red color characteristics (CIElab, Hue-Saturation-Brightness, K/S and CMYK), elongation at break and stable thermal resistance, ultimately achieving outstanding dyeing effect. This work indicates that BR-Ch can potentially replace synthetic pigments to functionalize lipase-pretreated PLA, and the dyed PLA demonstrate the excellent packaging application prospects in food field by 3D-printed products.
Collapse
Affiliation(s)
- Jianing Shi
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing, (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing, (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, PR China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing, (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Yang F, Ye X, Zhong J, Lin Z, Wu S, Hu Y, Zheng W, Zhou W, Wei Y, Dong X. Recycling of waste crab shells into reinforced poly (lactic acid) biocomposites for 3D printing. Int J Biol Macromol 2023; 234:122974. [PMID: 36566808 DOI: 10.1016/j.ijbiomac.2022.12.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
To promote natural waste resource utilization, a novel biocomposite, composed of waste crab shells and poly (lactic acid) matrix, was developed by combining chemical treatment and 3D printing. A crab shell powder (ISCSP) with an abundant porous structure and a high specific surface area was obtained by treatment with hydrochloric acid and sodium hydroxide. Importantly, under the optimal printing parameters determined by the finite element analysis, test samples, and porous bones were successfully printed using CSP/PLA composites by a commercial fused deposition modeling (FDM) 3D printer. The morphology, mechanical and thermal properties, antibacterial properties, and biocompatibility of the CSP/PLA composites were then assessed. Our results revealed that the tensile strength and flexural strength of the ISCSP/PLA composites reached 58.71 and 90.11 MPa, which were 28.6 % and 28.8 % higher than that of pure PLA, respectively. The glass transition and melting temperatures of the composites remained similar to those of pure PLA. Interestingly, the addition of CSP increased PLA crystallinity, which could be attributed to the nucleation effect of CSP in the system. The antibacterial activity of the PLA-1.5ESCSP composite samples against Escherichia coli (E. coli) was greater than 99 %. More importantly, the live/dead assay showed that the CSP/PLA composites possessed excellent biocompatibility. Therefore, the developed CSP/PLA biocomposites are potential feedstocks for 3D printing in bone tissue engineering and may be used as graft substitutes in reparative and reconstructive surgery. They are especially beneficial due to their superior mechanical and thermal properties, excellent antibacterial activities, and significant biocompatibility.
Collapse
Affiliation(s)
- Feiwen Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China
| | - Xinliang Ye
- School of Intelligent Manufacturing, Guangzhou Vocational College of Technology & Business, Guangzhou 511442, China
| | - Jing Zhong
- Department of Plastic and Aesthetic Surgery, Institute of Dermatology, Southern Medical University, Guangzhou 510091, China.
| | - Zhaowen Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China
| | - Shangjing Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China
| | - Yang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China
| | - Wenxu Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China.
| | - Yen Wei
- Department of Chemistry and Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 10084, China
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|