1
|
Zhang L, Li W, Wei L, Zhao Y, Qiu Y, Liu H, Huang C, Huang J. Optimizing the Production of Hydrogel Microspheres Using Microfluidic Chips: The Influence of Surface Treatment on Droplet Formation Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13932-13945. [PMID: 37722128 DOI: 10.1021/acs.langmuir.3c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Microfluidic chips have been widely applied in biology and medical research for stably generating uniform droplets that can be solidified into hydrogel microspheres. However, issues such as low microsphere yield, lengthy experimental processes, and susceptibility to environmental interference need to be addressed. In this work, a simple and effective method was developed to modify microfluidic chips at room temperature to improve the production performance of hydrogel microspheres. Numerical simulation-assisted experiments were conducted to comprehensively understand the effect of solution viscosity, hydrophilicity, and flow rate ratio on droplet formation during microsphere production. Chitosan was selected as the main component and combined with poly(ethylene glycol) diacrylate to prepare photocurable hydrogel microspheres as a demonstration. As a result, grafting fluoro-silane (FOTS) increased the contact angle of the channel from 90 to approximately 110°, which led to a 12.2% increase in droplet yield. Additionally, FOTS-modification attenuated the impact of the flow rate ratio on droplet yield by 19.1%. Alternatively, depositing dopamine decreased the channel's contact angle from 90 to 60°, resulting in a 21.4% increase in particle size and enabling the chip to adjust droplet size over a wider range. Further study demonstrates that the obtained hydrogel microspheres can be modified with layers of aldehyde, which can potentially be used for controlled drug release. Overall, this study proposed a facile method for adjusting the yield and droplet size through surface treatment of microfluidic chips while also enhancing the understanding of the synergistic effects of multiple factors in microfluidics-based microsphere production.
Collapse
Affiliation(s)
- Limin Zhang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Weitao Li
- Research Institute Exploration and Development, Shengli Oilfield Company, SINOPEC, Dongying, Shandong Province 257015, China
| | - Luxing Wei
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Yiming Zhao
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Yinghua Qiu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Hanlian Liu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Chuanzhen Huang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| |
Collapse
|
2
|
Sun G, Zeng G, Hu C, Wang M. Research progress on the application of tristate water in preparation of starch‐based foaming materials. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gang Sun
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
- Hunan Key Laboratory of Biomass Fiber Functional Materials Hunan University of Technology Zhuzhou People's Republic of China
| | - Guangsheng Zeng
- Hunan Key Laboratory of Biomass Fiber Functional Materials Hunan University of Technology Zhuzhou People's Republic of China
- College of Electromechanical Engineering Changsha University Changsha People's Republic of China
| | - Can Hu
- Hunan Key Laboratory of Biomass Fiber Functional Materials Hunan University of Technology Zhuzhou People's Republic of China
| | - Mengli Wang
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| |
Collapse
|
3
|
Sun G, Zeng G, Hu C, Jiang T. Starch-based aerogel prepared by freeze-drying: establishing a BP neural network prediction model. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Huang Y, Zhang Y, Su Y, Zhai Z, Chen J, Wang C. Two-photon induced polymerization in a porous polymer film to create multi-layer structures. Chem Commun (Camb) 2021; 57:4516-4519. [PMID: 33956025 DOI: 10.1039/d1cc01383a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two-photon induced polymerization for three-dimensional (3D) printing has attracted increasing attention. Here, we report the two-photon induced polymerization of triethylene glycol divinyl ether (TEGDVE) in a porous polymer film using 4,4',4''-nitrilotribenzoic acid (NTB) as the photosensitizer and diphenyliodonium hexafluorophosphate (HIP) as the initiator, enabling the printing of multi-layer structures in the porous support.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | - Yusheng Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | - Yuming Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | - Zhenghao Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | - Jiawei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
5
|
Khan M, Shah LA, Rehman T, Khan A, Iqbal A, Ullah M, Alam S. Synthesis of physically cross-linked gum Arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00801-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|