1
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
2
|
Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023; 9:e12810. [PMID: 36793956 PMCID: PMC9922933 DOI: 10.1016/j.heliyon.2023.e12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
Collapse
Affiliation(s)
- Monis Bin Abid
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Application of SiON Coatings in Sandstone Artifacts Conservation. COATINGS 2022. [DOI: 10.3390/coatings12060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For a long time, a large number of sandstone cultural relics have been exposed to the outdoors, and they are facing unprecedented threats. Curing perhydropolysilazane at varied pyrolysis times results in a series of SiON solids. Fourier transform infrared absorption spectroscopy (FTIR) results show that the Si−H bond disappears at 2163 cm−1, and that the Si−O peaks at 460 cm−1, becoming stronger during the pyrolysis of Perhydropolysilazane (PHPS) to SiON solids. X-ray photoelectron spectroscopy (XPS) results indicate a decrease in the proportion of N atoms from 22.71% to 3.38% and an increase in the proportion of O atoms from 59.74% to 69.1%, indicating a gradual production of SiO2 from perhydropolysilazane. To protect the sandstone, the SiON protective layer and the commonly used protective materials—acrylic resin and polydimethylsiloxane—are applied. When compared to sandstone treated with acrylic resin B72 and polydimethylsiloxane coatings, SiON-coated sandstone effectively reduces porosity and water absorption. Ageing tests have shown that the SiON-coated sandstone is effective in resisting crystalline damage from sodium sulfate. These thenardites can change shape during formation, allowing their widespread distribution in different locations in the sandstone. The surface thenardite of the SiON-treated samples was smaller than that of the polydimethylsiloxane and acrylic resin B72-treated samples, while the untreated samples were flaky with obvious dehydration characteristics.
Collapse
|
4
|
Singh LP, Dhaka RK, Ali D, Tyagi I, Sharma U, Banavath SN. Remediation of noxious pollutants using nano-titania-based photocatalytic construction materials: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34087-34107. [PMID: 33963998 DOI: 10.1007/s11356-021-14189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Nano-titania (n-TiO2), due to its unique photocatalytic and hydrophobic properties, can be used to prepare self-cleaning cement-based smart building materials. The n-TiO2 degrades organic and inorganic pollutants through its photocatalytic action and convert them into non-toxic byproducts, i.e., improves the air quality. In this review, aspects such as methodologies of n-TiO2 synthesis, approaches for n-TiO2 loading on cementitious materials, photocatalytic properties, self-cleaning mechanism, and application of n-TiO2 in cement-based materials have been overviewed. Further, the n-TiO2 can be used either as coatings or admixtures in pavement blocks, mortars/concrete at zebra crossings, road dividers and linings, and high rise buildings. Moreover, the implications and economic aspects of n-TiO2 usage in cement-based materials revealed that n-TiO2 increases the material cost by ~ 27%, (101 to 128.1$) in comparison to conventional building materials. Furthermore, the low-cost carbonized materials such as biochars have been suggested to be used as support of n-TiO2 to lower the cost and improve the remediation efficiency of photocatalytic concrete.
Collapse
Affiliation(s)
- Lok Pratap Singh
- CSIR-Central Building Research Institute, Roorkee, 247667, India.
| | - Rahul Kumar Dhaka
- CSIR-Central Building Research Institute, Roorkee, 247667, India
- Department of Chemistry, Environmental Sciences & Centre for Bio-Nanotechnology (COBS & H), CCS Haryana Agricultural University, Hisar, 125004, India
| | - Dilshad Ali
- CSIR-Central Building Research Institute, Roorkee, 247667, India
- Uttarakhand Technical University, Dehradun, 248007, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700053, India
| | - Usha Sharma
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| | | |
Collapse
|
5
|
Chen Z, Wang Q, Zhang Z, Lei H. Preparation and properties of antibacterial fluorinated acrylic emulsion. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Lei H, Zhou L, Chen Z, Wang Q, Yang W. Weathering modification of acrylic emulsion by introducing
UV
absorbing groups. J Appl Polym Sci 2021. [DOI: 10.1002/app.50454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huibin Lei
- College of Chemistry and Chemical Engineering Jishou University Jishou China
| | - Lei Zhou
- College of chemistry and Chemical engineering Hunan University Changsha China
| | - Zhanglian Chen
- College of Chemistry and Chemical Engineering Jishou University Jishou China
| | - Qian Wang
- College of Chemistry and Chemical Engineering Jishou University Jishou China
| | - Wei Yang
- General Armaments Department Guiyang Aviation Electrical Machinery Co. Guiyang China
| |
Collapse
|
7
|
Ifra, Kongkham B, Sharma S, Chaurasiya A, Biswal AK, Hariprasad P, Saha S. Development of non‐leaching antibacterial coatings through quaternary ammonium salts of styrene based copolymers. J Appl Polym Sci 2020. [DOI: 10.1002/app.50422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Bhani Kongkham
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Shivangi Sharma
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Alok Chaurasiya
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Agni K. Biswal
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - P. Hariprasad
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
8
|
Polypyrrole coatings for corrosion protection of Al alloy2024: influence of electrodeposition methods, solvents, and ZnO nanoparticle concentrations. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00726-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|