1
|
Ruan J, Liao C, Li P, Li X, Zuo Y. Synergistic preparation of a straw fiber/polylactic acid composite with high toughness and strength through interfacial compatibility enhancement and elastomer toughening. Int J Biol Macromol 2024; 275:133621. [PMID: 38960248 DOI: 10.1016/j.ijbiomac.2024.133621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Plant fiber-reinforced polylactic acid (PLA) composites are extensively utilized in eco-friendly packaging, sports equipment, and various other applications due to their environmental benefits and cost-effectiveness. However, PLA suffers from brittleness and poor toughness, which restricts its use in scenarios demanding high toughness. To expand the application range of plant fiber-reinforced PLA-based composites and enhance their poor toughness, this study employed a two-step process involving wheat straw fiber (WF) to improve the interfacial compatibility between WF and PLA. Additionally, four elastomeric materials-poly (butylene adipate-co-terephthalate) (PBAT), poly (butylene succinate) (PBS), polycaprolactone (PCL), and polyhydroxyalkanoate (PHA)-were incorporated to achieve a mutual reactive interface enhancement and elastomeric toughening. The results demonstrated that Fe3+/TsWF/PLA/PBS exhibited a tensile strength, elongation at break, and impact strength of 34.01 MPa, 14.23 %, and 16.2 kJ/m2, respectively. These values represented a 2.4 %, 86.7 %, and 119 % increase compared to the unmodified composites. Scanning electron microscopy analysis revealed no fiber exposure in the cross-section, indicating excellent interfacial compatibility. Furthermore, X-ray diffraction and differential scanning calorimetry tests confirmed improvements in the crystalline properties of the composites. This work introduces a novel approach for preparing fiber-reinforced PLA-based composites with exceptional toughness and strength.
Collapse
Affiliation(s)
- Jiuchang Ruan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Chenggang Liao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Ping Li
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yingfeng Zuo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| |
Collapse
|
2
|
Lv C, Luo S, Guo W, Chang L. Enhancing interfacial interaction and crystallization in polylactic acid-based biocomposites via synergistic effect of wood fiber and self-assembly nucleating agent. Int J Biol Macromol 2023; 253:127265. [PMID: 37802453 DOI: 10.1016/j.ijbiomac.2023.127265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Incorporation of natural fibers into polylactic acid (PLA) provides a feasible pathway to improve the performance of PLA with a low environmental impact. However, the insufficient interfacial adhesion between fiber and matrix limits the reinforcement efficiency of fiber and final mechanical properties of the biocomposites. Herein we reported an efficient method to simultaneously enhance interfacial interaction, crystallization and mechanical performance of PLA-based biocomposites via combination of wood fiber (WF) and a self-assembly nucleating agent (TMC-300). The interactions between WF and TMC-300 and its influence on PLA, including interfacial crystal morphology, crystallization behavior, and mechanical performance were studied. The results showed that TMC-300 could self-assemble into dendritic-like structure on WF surface driven by hydrogen bonding, inducing the epitaxial crystallization of PLA. This unique interfacial crystallization integrated PLA matrix with WF, resulting in better interfacial adhesion. Under the optimal TMC-300 content (0.5 wt%), the flexural strength and notched impact strength of PLA composites increased by 10 % and 69 % compared with neat PLA, respectively. Additionally, TMC-300 and WF synergistically functioned as effective nucleating agents, which significantly accelerated the crystallization rate and improved the crystallinity of PLA. This work provides a new insight into the enhancement of interfacial bonding in natural fiber/PLA biocomposites.
Collapse
Affiliation(s)
- Chao Lv
- Research Institute of Wood Industry, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China
| | - Shupin Luo
- Research Institute of Wood Industry, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China.
| | - Wenjing Guo
- Research Institute of Wood Industry, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China
| | - Liang Chang
- Research Institute of Wood Industry, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China
| |
Collapse
|
3
|
Cruz Fabian DR, Durpekova S, Dusankova M, Cisar J, Drohsler P, Elich O, Borkova M, Cechmankova J, Sedlarik V. Renewable Poly(Lactic Acid)Lignocellulose Biocomposites for the Enhancement of the Water Retention Capacity of the Soil. Polymers (Basel) 2023; 15:polym15102243. [PMID: 37242817 DOI: 10.3390/polym15102243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This manuscript details the preparation and characterization of a renewable biocomposite material intended as a soil conditioner based on low-molecular-weight poly(lactic acid) (PLA) and residual biomass (wheat straw and wood sawdust). The swelling properties and biodegradability of the PLA-lignocellulose composite under environmental conditions were evaluated as indicators of its potential for applications in soil. Its mechanical and structural properties were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results showed that the incorporation of lignocellulose waste material into PLA increased the swelling ratio of the biocomposite by up to 300%. The application of the biocomposite of 2 wt% in soil enhanced its capacity for water retention by 10%. In addition, the cross-linked structure of the material proved to be capable of swelling and deswelling repeatedly, indicating its good reusability. Incorporating lignocellulose waste in the PLA enhanced its stability in the soil environment. After 50 days of the experiment, almost 50% of the sample had degraded in the soil.
Collapse
Affiliation(s)
- Dalila Rubicela Cruz Fabian
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Silvie Durpekova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Miroslava Dusankova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Jaroslav Cisar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Petra Drohsler
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Ondrej Elich
- Dairy Research Institute, Ke Dvoru 12a, 160 00 Prague, Czech Republic
| | - Marketa Borkova
- Dairy Research Institute, Ke Dvoru 12a, 160 00 Prague, Czech Republic
| | - Jarmila Cechmankova
- Research Institute for Soil and Water Conservation, Zabovreska 250, 15627 Prague, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| |
Collapse
|
4
|
Sharifi A, Mousavi SR, Ghanemi R, Mohtaramzadeh Z, Asheghi R, Mohammadi-Roshandeh J, Khonakdar HA, Hemmati F. Extruded biocomposite films based on poly(lactic acid)/chemically-modified agricultural waste: Tailoring interface to enhance performance. Int J Biol Macromol 2023; 233:123517. [PMID: 36739050 DOI: 10.1016/j.ijbiomac.2023.123517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
In this work, a lignocellulosic filler, rice straw (RS), was thermoplasticized by acetylation modification process and compounded with plasticized poly(lactic acid) (PLA) through twin-screw extrusion process. The biocomposite films were prepared continuously by using a slit die for PLA/RS and PLA/acetylated RS (ARS) compounds. By the chemical reaction, thermoset microstructure of RS was changed to a more flexible one. Additionally, by the reaction, the interfacial adhesion of lignocellulosic filler/PLA matrix, filler hydrophobicity and PLA wettability was enhanced considerably. The miscibility of partially phase-separated PLA/poly(ethylene glycol) (PEG) mixtures was improved by adding RS-based microfillers, particularly by the acetylated RS. Compared with PLA/unmodified RS films, PLA/ARS biocomposites show better thermal stability, toughness, Young modulus and softening point, especially at certain filler loadings.
Collapse
Affiliation(s)
- Ali Sharifi
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Guilan, Iran
| | - Seyed Rasoul Mousavi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Reza Ghanemi
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Guilan, Iran
| | - Zahra Mohtaramzadeh
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Guilan, Iran
| | - Reza Asheghi
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Guilan, Iran
| | | | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Farkhondeh Hemmati
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Guilan, Iran.
| |
Collapse
|
5
|
Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. MATERIALS 2022; 15:ma15124312. [PMID: 35744371 PMCID: PMC9228835 DOI: 10.3390/ma15124312] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The article discusses various processes that can be utilized in the fabrication of PLA-based composites. In a later section, we have a detailed discourse on the various composites and nanocomposites-based PLA along with the properties’ comparisons, discussing our investigation on the effects of various fibers, fillers, and nanofillers on the mechanical, thermal, and wear properties of PLA. Lastly, the various applications in which PLA is used extensively are discussed in detail.
Collapse
|
6
|
Dominguez-Candela I, Gomez-Caturla J, Cardona S, Lora-García J, Fombuena V. Novel compatibilizers and plasticizers developed from epoxidized and maleinized chia oil in composites based on PLA and chia seed flour. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Mechanical properties of fibre/ filler based poly(Lactic Acid) (Pla) composites : A brief review. ACTA INNOVATIONS 2021. [DOI: 10.32933/actainnovations.41.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Being a biodegradable polymer, poly(lactic acid) (PLA) based composites receive greater preference over non-biodegradable plastics. Poly(lactic acid) has to find its place in various applications such as polymer composites, agriculture, biomedical, etc. Polymer composites based on PLA possess comparable mechanical strength, endurance, flexibility and endures future opportunities. Several combinations of natural fibers and filler-based PLA composites have been fabricated and investigated for physical and mechanical changes. Moreover, several biopolymers and compatibilizers are added to PLA to provide rigidity. The paper presents a tabulated review of the various natural fiber/filter-based PLA composites and the preparation and outcomes. In addition, enhancement made by the reinforcement of nano filler in the PLA are also discussed in brief. The significance of PLA in the biomedical application has been discussed in brief. The paper also shed lights in the social and economic aspects of PLA.
Collapse
|
8
|
Shoja M, Kazemi R, Mohammadi‐Roshandeh J, Farizeh T, Shadman A, Hemmati F. Hybrid mathematical modeling and multi‐objective optimization of mechanical properties of green composites based on starch and modified rice straw fillers. J Appl Polym Sci 2021. [DOI: 10.1002/app.50915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maryam Shoja
- Fouman Faculty of Engineering, College of Engineering University of Tehran Tehran Iran
| | - Reza Kazemi
- Caspian Faculty of Engineering, College of Engineering University of Tehran Tehran Iran
| | | | - Tara Farizeh
- Caspian Faculty of Engineering, College of Engineering University of Tehran Tehran Iran
| | - Alireza Shadman
- Department of Industrial Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Farkhondeh Hemmati
- Caspian Faculty of Engineering, College of Engineering University of Tehran Tehran Iran
| |
Collapse
|
9
|
Shoja M, Mohammadi-Roshandeh J, Hemmati F, Zandi A, Farizeh T. Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures. Int J Biol Macromol 2020; 157:715-725. [PMID: 31794825 DOI: 10.1016/j.ijbiomac.2019.11.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022]
Abstract
In this work, rice straw (RS) as an abundant biomass was applied to prepare some renewable thermoplastic materials by using soda-pulping and benzylation processes. The obtained RS products including untreated RS, RS pulp, benzylated RS pulp and pulping liquor as well as benzylated RS were incorporated into the thermoplastic starch through a twin-screw extrusion process to obtain all green composites. The successful thermoplasticization reaction of RS products was confirmed by spectroscopy results and morphological observations. The interfacial adhesion between the plasticized starch matrix and the RS products is enhanced by the chemical modifications, which confirmed by investigating through the morphological observations and linear rheological responses. The partial phase miscibility of the plasticizer/starch mixtures is improved by adding the benzylated RS and RS pulp. The RS pulp having cellulosic microfibers enhances the Young modulus and tensile strength of the plasticized starch even more than untreated RS. However, their thermoset and thermoset-like structure leads to the brittle failure mode of the starch biocomposites, similar to the common natural fiber biocomposites. The thermoplasticization reaction changes the failure mode and significantly improves the toughness of the plasticized starch/RS product biocomposites owing to better phase miscibility.
Collapse
Affiliation(s)
- Maryam Shoja
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Farkhondeh Hemmati
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - As'ad Zandi
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Tara Farizeh
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Ghorbani Chaboki M, Mohammadi-Rovshandeh J, Hemmati F. Poly(lactic acid)/thermoplasticized rice straw biocomposites: effects of benzylated lignocellulosic filler and nanoclay. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00743-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|