1
|
Bastanian M, Olad A, Ghorbani M. Sustainable chrome-free leather manufacturing through the aldehyde-vegetable combination tanning method based on biomass-derived dialdehyde carboxymethyl cellulose and mimosa tannin. Int J Biol Macromol 2025; 306:141554. [PMID: 40020822 DOI: 10.1016/j.ijbiomac.2025.141554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The potential of dialdehyde polysaccharides as chrome-free tanning agents can be enhanced through the use of aldehyde-vegetable combination tanning technology. In this study, dialdehyde carboxymethyl cellulose was synthesized by oxidizing carboxymethyl cellulose with sodium periodate. Fourier transform infrared spectroscopy revealed two characteristic bands at 1738 cm-1 and 886 cm-1. Leather tanned solely with dialdehyde carboxymethyl cellulose exhibited a shrinkage temperature of 78 °C. To enhance the properties, mimosa tannin was combined with dialdehyde carboxymethyl cellulose. The combination of dialdehyde and mimosa tannin showed enhanced mechanical properties, including a tensile strength of 245.71 kg/cm2, tear strength of 44.63 kg/cm, and elongation at break of 45.23 %. Additionally, scanning electron microscopy revealed a well-dispersed arrangement of collagen fibers. The combination tanning resulted in a synergistic effect, increasing the shrinkage temperature to 85 °C due to additional hydrogen bonding. Furthermore, the excellent organoleptic properties, including fullness and softness were observed for combined-tanned leather resulting from the synergistic effect of dialdehyde carboxymethyl cellulose and mimosa tannin. Further studies showed that the wastewater generated by the aldehyde-vegetable combination tanning method is easily biodegradable. Based on the results, the combination tanning technology offers a green, chrome-free, and metal-free approach for the sustainable development of the leather industry.
Collapse
Affiliation(s)
- Maryam Bastanian
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Iran Polymer and Petrochemical Institute, P.O. Box: 149665/115, Tehran, Iran
| |
Collapse
|
2
|
Wang D, Song Z, Cao C, Tang C. Preparation of Poly(allylamine Hydrochloride) Grafted Porous Boron Nitride Fibers for Efficient Cr(VI) Adsorption from Aqueous Solution. Chempluschem 2024; 89:e202400470. [PMID: 39212148 DOI: 10.1002/cplu.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Cr(VI) pollution poses great harm to the cyclic utilization of groundwater and surface water resources. Efficient adsorbent materials have great potential to change this situation and assist in the restoration of ecosystems. This work chooses porous boron nitride fibers (pBN) with stable physical and chemical properties as the matrix, 3-aminopropyltriethoxysilane (APTES) as the coupling agent, and uses a one-step crosslinking method to graft poly(allylamine hydrochloride) (PAH) onto pBN, forming pBN-AS@PAH with fascinating Cr(VI) adsorption capacity. PAH is uniformly covered and modified on the surface of pBN, and the composite with high specific surface area (383.33 m2/g), large pore volume (0.37 cm3/g), and abundant amino groups. Its equilibrium adsorption capacity for Cr(VI) can reach up to 123.32 mg/g, and the adsorption behavior follows the quasi second-order kinetic model and Langmuir model, indicating the chemical adsorption process of monolayer. The adsorption style belongs to a spontaneous exothermic process and has the optimal adsorption effect at a pH of ~2. Additionally, after cycling for 5 times, the decrease rate of adsorption capacity is less than 10 %, showing an excellent reusability.
Collapse
Affiliation(s)
- Dong Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Zirui Song
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Chaochao Cao
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, PR China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| |
Collapse
|
3
|
Kimani PK, Lim LW. Custom and definitive screening designs for evaluating multiple adsorbents: bisphenol-A adsorption onto villi-structured polyaniline/carboxymethyl cellulose composites. ENVIRONMENTAL TECHNOLOGY 2024; 45:6224-6236. [PMID: 38488120 DOI: 10.1080/09593330.2024.2329918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/05/2024] [Indexed: 12/05/2024]
Abstract
Polyaniline composites consisting of carboxymethyl cellulose (CMC) have enhanced adsorption properties, but recent studies indicate that the oxidised species - dialdehyde carboxymethyl cellulose (DCMC) - outperforms CMC-based composites. However, these studies fail to study the effect of DCMC's aldehyde content and compare the composites with CMC-based composites; numerous experiments required to investigate each adsorbent for each factor limit such studies. We explored a way to study whether villi-structured polyaniline (VSPANI), its CMC composite (CMC/PANI), and its DCMC composites with 35% (DCMC(A)/PANI) and 77% (DCMC(B)/PANI) aldehyde content would be great adsorbents for removing bisphenol-A (BPA). We first customised a D-optimal screening design to alleviate the pitfalls of definitive screening design (DSD), hence estimating all the main effects: initial concentration, pH, flow rate, adsorbent amount, sample volume and type of adsorbent. We excluded CMC/PANI and DCMC(A)/PANI composites, both with low adsorption capacities of 56.57 and 57.27 mg/g from further investigation. The DSD followed to estimate all second-order effects through which we projected a response surface method (RSM) to optimise and model the active factors. Increasing the aldehyde content on the composites favoured adsorption, but there lacked evidence to suggest VSPANI and DCMC(B)/PANI differed significantly in performance. The models were numerically and graphically proven adequate, explaining 80% and 99% of the variation when predicting removal efficiency and adsorption capacity. VSPANI showed potential as an adsorbent for BPA removal with 85% removal efficiency and 129 mg/g adsorption capacity. This comprehensive approach, combining both designs, allows for sustainable investigation of multiple adsorbents and factors, minimising experimental waste.
Collapse
Affiliation(s)
- Paul Kinyanjui Kimani
- Department of Engineering Science, Graduate School of Engineering, Gifu University, Gifu, Japan
| | - Lee Wah Lim
- Department of Engineering Science, Graduate School of Engineering, Gifu University, Gifu, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- International Joint Department of Materials Science and Engineering between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Bastanian M, Olad A, Ghorbani M. Tuning a green carboxymethyl cellulose-based pre-tanning agent via peroxide oxidation for high chrome exhaustion in leather industry. Int J Biol Macromol 2024; 265:131133. [PMID: 38537851 DOI: 10.1016/j.ijbiomac.2024.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
The low chrome uptake by collagen in the conventional tanning process leads to the pollution of the wastewater. Due to environmental concerns, leather scientists are already searching for innovative ways to produce pre-tanning agents as a high exhaustion chrome tanning auxiliary. Herein, a novel kind of pre-tanning agent is engineered by converting carboxymethyl cellulose (CMC) to oxidized carboxymethyl cellulose (OCMC) via the hydrogen peroxide process. FT-IR and carboxyl content analysis demonstrated the increase in carboxyl content after oxidation. After that, the obtained OCMC was utilized as a pre-tanning agent, resulting in a high exhaustion of chrome (92.76 %) which is 27.76 % more than conventional chrome tanning (65 %), and the amount of chrome in wastewater reduced to 7.24 %. The hydrothermal stability of wet-blue increased by increasing the uptake of chrome (Ts = 118 °C). The obtained crust leather represented excellent mechanical properties (Tensile strength: 305.68 kg/cm2; tear strength: 50 kg/cm) and desirable organoleptic properties. The environmental analysis signifies a significant step towards a cleaner and sustainable tanning process (COD = 1600, BOD5 = 560 mg/L) compared to the conventional chrome tanning process. Consequently, the obtained results offer a green pre-tanning agent to meet the requirements of the sustainable development of the leather industry.
Collapse
Affiliation(s)
- Maryam Bastanian
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Iran polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| |
Collapse
|
5
|
Mohamad Sarbani NM, Hidayat E, Naito K, Mitoma Y, Harada H. Cr (VI) and Pb (II) Removal Using Crosslinking Magnetite-Carboxymethyl Cellulose-Chitosan Hydrogel Beads. Gels 2023; 9:612. [PMID: 37623067 PMCID: PMC10453601 DOI: 10.3390/gels9080612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Heavy metals, such as chromium (VI) and lead (II), are the most common pollutants found in wastewater. To solve these problems, this research was intended to synthesize magnetite hydrogel beads (CMC-CS-Fe3O4) by crosslinking carboxymethyl cellulose (CMC) and chitosan (CS) and impregnating them with iron oxide (Fe3O4) as a potential adsorbent to remove Cr (VI) and Pb (II) from water. CMC-CS-Fe3O4 was characterized by pHzpc, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Batch removal experiments with different variables (CMC:CS ratio, pH, initial metals concentration, and contact time) were conducted, and the results revealed that CMC-CS-Fe3O4 with a CMC:CS (3:1) ratio had the best adsorption capacity for Cr (VI) and Pb (II) at pH levels of 2 and 4, respectively. The findings of this research revealed that the maximum adsorption capacity for Cr (VI) and Pb (II) were 3.5 mg/g and 18.26 mg/g, respectively, within 28 h at 30 ℃. The adsorption isotherm and adsorption kinetics suggested that removal of Cr (VI) and Pb (II) were fitted to Langmuir and pseudo-second orders. The highest desorption percentages for Cr (VI) and Pb (II) were 70.43% and 83.85%, achieved using 0.3 M NaOH and 0.01 M N·a2EDTA, respectively. Interestingly, after the first cycle of the adsorption-desorption process, the hydrogel showed a sudden increase in adsorption capacity for Cr (VI) and Pb (II) until it reached 7.7 mg/g and 33.0 mg/g, respectively. This outcome may have certain causes, such as entrapped metal ions providing easy access to the available sites inside the hydrogel or thinning of the outer layer of the beads leading to greater exposure toward active sites. Hence, CMC-CS-Fe3O4 hydrogel beads may have potential application in Cr (VI) and Pb (II) removal from aqueous solutions for sustainable environments.
Collapse
Affiliation(s)
- Nur Maisarah Mohamad Sarbani
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Endar Hidayat
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Kanako Naito
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Yoshiharu Mitoma
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Hiroyuki Harada
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| |
Collapse
|
6
|
Yuan X, Li J, Luo L, Zhong Z, Xie X. Advances in Sorptive Removal of Hexavalent Chromium (Cr(VI)) in Aqueous Solutions Using Polymeric Materials. Polymers (Basel) 2023; 15:388. [PMID: 36679268 PMCID: PMC9863183 DOI: 10.3390/polym15020388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Sorptive removal of hexavalent chromium (Cr(VI)) bears the advantages of simple operation and easy construction. Customized polymeric materials are the attracting adsorbents due to their selectivity, chemical and mechanical stabilities. The mostly investigated polymeric materials for removing Cr(VI) were reviewed in this work. Assembling of robust functional groups, reduction of self-aggregation, and enhancement of stability and mechanical strength, were the general strategies to improve the performance of polymeric adsorbents. The maximum adsorption capacities of these polymers toward Cr(VI) fitted by Langmuir isotherm model ranged from 3.2 to 1185 mg/g. Mechanisms of complexation, chelation, reduction, electrostatic attraction, anion exchange, and hydrogen bonding were involved in the Cr(VI) removal. Influence factors on Cr(VI) removal were itemized. Polymeric adsorbents performed much better in the strong acidic pH range (e.g., pH 2.0) and at higher initial Cr(VI) concentrations. The adsorption of Cr(VI) was an endothermic reaction, and higher reaction temperature favored more robust adsorption. Anions inhibited the removal of Cr(VI) through competitive adsorption, while that was barely affected by cations. Factors that affected the regeneration of these adsorbents were summarized. To realize the goal of industrial application and environmental protection, removal of the Cr(VI) accompanied by its detoxication through reduction is highly encouraged. Moreover, development of adsorbents with strong regeneration ability and low cost, which are robust for removing Cr(VI) at trace levels and a wider pH range, should also be an eternally immutable subject in the future. Work done will be helpful for developing more robust polymeric adsorbents and for promoting the treatment of Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Xiaoqing Yuan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jingxia Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyu Zhong
- Hunan Research Academy of Environmental Sciences, Changsha 410014, China
| | - Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Fantinel LA, Bonetto LR, Baldasso C, Poletto M. Evaluation of the use of adsorbents based on graphene oxide and cellulose for Cr(VI) adsorption. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lucas Antônio Fantinel
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Luis Rafael Bonetto
- Chemical Engineering, Exact Sciences, and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Camila Baldasso
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Matheus Poletto
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| |
Collapse
|
8
|
Li Q, Cheng Y, Razzaque S, Cao Z, Ren S, Tan B. Smart Synthesis of Hollow Microporous Organic Capsules with a Polyaniline Modified Shell. Macromol Rapid Commun 2022; 43:e2100836. [PMID: 35141972 DOI: 10.1002/marc.202100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Indexed: 11/08/2022]
Abstract
In this work, novel hypercrosslinked polymer-based hollow microporous organic capsules with a polyaniline (PANI)-modified shell (PANI@S-HMOCs) are prepared by in-situ polymerization of aniline in the porous structure of the sulfonated hollow microporous organic capsules (S-HMOCs). PANI@S-HMOC1, PANI@S-HMOC2, and PANI@S-HMOC3 are made by adjusting S-HMOCs and aniline weight ratios of 4:1 and 3:1, and 2:1, respectively. The characterizations of PANI@S-HMOCs demonstrate that electrostatic interaction between aniline and sulfonic acid groups plays an important role in encapsulating PANI in the pores of the shell. The content of PANI showed an evident effect on the porosity of PANI@S-HMOCs, and an appropriate polyaniline loading amount may increase the surface area. PANI@S-HMOC1 and PANI@S-HMOC2 have higher BET surface areas (529 and 503 m2 g-1 ) than S-HMOCs (424 m2 g-1 ), but PANI@S-HMOC3 has lower BET surface area (380 m2 g-1 ). Based on the structural and textural features, PANI@S-HMOC2 shows good adsorption performance for Cr(VI) from aqueous media (156 mg g-1 , pH = 2, and 27 mg g-1 , pH = 7).
Collapse
Affiliation(s)
- Qingyin Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ying Cheng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shumaila Razzaque
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zuolin Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bien Tan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Saltan F. Preparation of poly(eugenol-co-methyl methacrylate)/polypropylene blend by creative route approach: structural and thermal characterization. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
10
|
Ebrahimi R. Radiation initiated synthesis, characterization, and swelling behavior of poly (acrylic acid‐co‐acrylamide)/starch grafted hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.50931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rajabali Ebrahimi
- Department of Chemistry Takestan Branch, Islamic Azad University Takestan Iran
| |
Collapse
|