1
|
Yan C, Zhang M, Li J, Zhang J, Wu Y. Thiol-promoted intermolecular cyclization to synthesize 1,2,4-oxadiazoles including tioxazafen under transition metal-free conditions. Org Biomol Chem 2023. [PMID: 37376991 DOI: 10.1039/d3ob00770g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A simple and efficient one-pot intermolecular annulation reaction for the synthesis of 1,2,4-oxadiazoles from amidoximes and benzyl thiols has been developed, in which benzyl thiols act as not only reactants but also organo-catalysts. The control experiments proved that thiol substrates could facilitate the dehydroaromatization step. High yield, functional group diversity and transition metal-free, extra oxidant-free, and mild conditions are the important practical features. Moreover, this protocol provides an effective alternative method for the synthesis of a commercially available broad-spectrum nematicide, tioxazafen.
Collapse
Affiliation(s)
- Congcong Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Min Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiaxin Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jinli Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Yangjie Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- Henan Key Laboratory of Chemical Biology and Organic Chemistry; Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
2
|
Stankiewicz A, Kaczorowska K, Bugno R, Kozioł A, Paluchowska MH, Burnat G, Chruścicka B, Chorobik P, Brański P, Wierońska JM, Duszyńska B, Pilc A, Bojarski AJ. New 1,2,4-oxadiazole derivatives with positive mGlu 4 receptor modulation activity and antipsychotic-like properties. J Enzyme Inhib Med Chem 2021; 37:211-225. [PMID: 34894953 PMCID: PMC8667925 DOI: 10.1080/14756366.2021.1998022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Considering the allosteric regulation of mGlu receptors for potential therapeutic applications, we developed a group of 1,2,4-oxadiazole derivatives that displayed mGlu4 receptor positive allosteric modulatory activity (EC50 = 282–656 nM). Selectivity screening revealed that they were devoid of activity at mGlu1, mGlu2 and mGlu5 receptors, but modulated mGlu7 and mGlu8 receptors, thus were classified as group III-preferring mGlu receptor agents. None of the compounds was active towards hERG channels or in the mini-AMES test. The most potent in vitro mGlu4 PAM derivative 52 (N-(3-chloro-4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)picolinamide) was readily absorbed after i.p. administration (male Albino Swiss mice) and reached a maximum brain concentration of 949.76 ng/mL. Five modulators (34, 37, 52, 60 and 62) demonstrated significant anxiolytic- and antipsychotic-like properties in the SIH and DOI-induced head twitch test, respectively. Promising data were obtained, especially for N-(4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)-3-methylphenyl)picolinamide (62), whose effects in the DOI-induced head twitch test were comparable to those of clozapine and better than those reported for the selective mGlu4 PAM ADX88178.
Collapse
Affiliation(s)
- Anna Stankiewicz
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Aneta Kozioł
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Maria H Paluchowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Burnat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Chruścicka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Paulina Chorobik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
3
|
Anjali Jha, Sen A, Malla RR. Chemistry of Oxadiazole Analogues: Current Status and Applications. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Khalifeh R, Naseri V, Rajabzadeh M. Synthesis of Imidazolium‐Based Ionic Liquid on Modified Magnetic Nanoparticles for Application in One‐Pot Synthesis of Trisubstituted Imidazoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202003133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Reza Khalifeh
- Department of Chemistry Shiraz University of Technology 71555-313 Shiraz Iran
| | - Vafa Naseri
- Department of Chemistry Shiraz University of Technology 71555-313 Shiraz Iran
| | - Maryam Rajabzadeh
- Department of Chemistry Shiraz University of Technology 71555-313 Shiraz Iran
| |
Collapse
|
5
|
Konwar M, Khupse ND, Saikia PJ, Sarma D. A potential greener protocol for peptide coupling reactions using recyclable/reusable ionic liquid [
$$\hbox {C}_{4}\hbox {-DABCO}][\hbox {N(CN)}_{2}$$
C
4
-DABCO
]
[
N(CN)
2
]. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1461-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Tolmachev A, Bogolubsky AV, Pipko SE, Grishchenko AV, Ushakov DV, Zhemera AV, Viniychuk OO, Konovets AI, Zaporozhets OA, Mykhailiuk PK, Moroz YS. Expanding Synthesizable Space of Disubstituted 1,2,4-Oxadiazoles. ACS COMBINATORIAL SCIENCE 2016; 18:616-624. [PMID: 27548754 DOI: 10.1021/acscombsci.6b00103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-pot synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from carboxylic acids and nitriles was optimized to parallel chemistry. The method was validated on a 141 member library; the desired products were recovered with a high success rate and in moderate yields. Practical application of the approach was demonstrated in the synthesis of bioactive compound pifexole and agonists of free fatty acid receptor 1. A library of 4 948 100 synthesizable drug-like 3,5-disubstituted 1,2,4-oxadiazoles was enumerated based on the method and available validated reagents.
Collapse
Affiliation(s)
- Andrey Tolmachev
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- ChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska Street, Kyiv, 02094, Ukraine
| | | | - Sergey E. Pipko
- ChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska Street, Kyiv, 02094, Ukraine
- UkrOrgSyntez Ltd. (UORSY), 29 Schorsa
Street, Kyiv, 01133, Ukraine
| | | | | | | | | | - Anzhelika I. Konovets
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- The
Institute of High Technologies, Kyiv National Taras Shevchenko University, 4 Glushkov Street, Building 5, Kyiv, 03187, Ukraine
| | - Olga A. Zaporozhets
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 64 Volodymyrska
Street, Kyiv, 01601, Ukraine
| | - Pavel K. Mykhailiuk
- Enamine Ltd., 78 Chervonotkatska
Street, Kyiv, 02094, Ukraine
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 64 Volodymyrska
Street, Kyiv, 01601, Ukraine
| | - Yurii S. Moroz
- ChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska Street, Kyiv, 02094, Ukraine
| |
Collapse
|
7
|
Panahi F, Dangolani SK, Khalafi-Nezhad A. Synthesis of a Novel Magnetic Reusable Organocatalyst Based on 4-Dialkylaminopyridines for Acyl Transformations. ChemistrySelect 2016. [DOI: 10.1002/slct.201600824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Farhad Panahi
- Department of Chemistry; College of Sciences; Shiraz 71454, Iran Iran
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | | | | |
Collapse
|