1
|
Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
2
|
Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116440] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Yang Z, Zhou X, Yin Y, Fang W. Determination of Nitrite by Noble Metal Nanomaterial-Based Electrochemical Sensors: A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1897134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhengfei Yang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyong Zhou
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongqi Yin
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Fang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Demir N, Atacan K, Ozmen M, Bas SZ. Design of a new electrochemical sensing system based on MoS2–TiO2/reduced graphene oxide nanocomposite for the detection of paracetamol. NEW J CHEM 2020. [DOI: 10.1039/d0nj02298e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic route for the MoS2–TiO2/rGO nanocomposite and the electrode reaction for paracetamol.
Collapse
Affiliation(s)
| | - Keziban Atacan
- Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC)
- Sakarya University
- Sakarya
- Turkey
| | | | | |
Collapse
|
5
|
Li D, Wang T, Li Z, Xu X, Wang C, Duan Y. Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water-A Review. SENSORS 2019; 20:s20010054. [PMID: 31861855 PMCID: PMC6983230 DOI: 10.3390/s20010054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp2 hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.
Collapse
Affiliation(s)
- Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| | - Tan Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Yanqing Duan
- Business school, University of Bedfordshire, Luton LU1 3BE, UK;
| |
Collapse
|
6
|
Li X, Zou N, Wang Z, Sun Y, Li H, Gao C, Wang T, Wang X. An electrochemical sensor for determination of nitrite based on Au nanoparticles decorated MoS2 nanosheets. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00885-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Li C, Chen D, Wang Y, Lai X, Peng J, Wang X, Zhang K, Cao Y. Simultaneous Electrochemical Detection of Nitrite and Hydrogen Peroxide Based on 3D Au-rGO/FTO Obtained Through a One-Step Synthesis. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1304. [PMID: 30875888 PMCID: PMC6471323 DOI: 10.3390/s19061304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022]
Abstract
In this paper, Au and reduced graphene oxide (rGO) were successively deposited on fluorine-doped SnO₂ transparent conductive glass (FTO, 1 × 2 cm) via a facile and one-step electrodeposition method to form a clean interface and construct a three-dimensional network structure for the simultaneous detection of nitrite and hydrogen peroxide (H₂O₂). For nitrite detection, 3D Au-rGO/FTO displayed a sensitivity of 419 μA mM-1 cm-2 and a linear range from 0.0299 to 5.74 mM, while for the detection of H₂O₂, the sensitivity was 236 μA mM-1 cm-2 and a range from 0.179 to 10.5 mM. The combined results from scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction measurements (XRD) and electrochemical tests demonstrated that the properties of 3D Au-rGO/FTO were attributabled to the conductive network consisting of rGO and the good dispersion of Au nanoparticles (AuNPs) which can provide better electrochemical properties than other metal compounds, such as a larger electroactive surface area, more active sites, and a bigger catalytic rate constant.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yuanyuan Wang
- Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China.
| | - Xiaoyong Lai
- Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Juan Peng
- Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiaohong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Kexi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Kesavan S, Kumar DR, Baynosa ML, Shim JJ. Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: Determination of nitrite in water samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:97-106. [PMID: 29407162 DOI: 10.1016/j.msec.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/19/2017] [Accepted: 12/07/2017] [Indexed: 11/19/2022]
Abstract
An electrode comprised of a polydiaminobenzene (p-DAB) film formed on electrochemically reduced graphene oxide (ERGO) on a glassy carbon (GC) (p-DAB@ERGO/GC) was fabricated using a potentiodynamic method for the sensitive and selective determination of nitrite in the presence of a common interference. The p-DAB@ERGO/GC film-modified electrode surfaces were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The film fabrication was initiated via the NH2 groups of DAB, which was confirmed by XPS from the peaks corresponding to NH (396.7eV), NH (399.4eV), NN (400.2eV), and N+H (402.2eV). The Raman spectra revealed the characteristic D and G bands at 1348 and 1595cm-1, respectively, which confirmed the fabrication of GO on the GC electrode, and the ratio of the D and G bands was increased after the electrochemical reduction of GO. The surface coverage of the modified electrode was 8.16×10-11molcm-2. The p-DAB@ERGO/GC film-modified electrode was used successfully for the determination of nitrite ions. The p-DAB@ERGO/GC film-modified electrode exhibited superior activity for the determination of nitrite compared to the bare GC and p-DAB@GC electrodes. The amperometric current increased linearly with increasing nitrite concentration from 7.0×10-6 to 2.0×10-2M. The detection limit was 30nM (S/N=3). In addition, the modified electrode was used successfully to determine the nitrite ion concentration in the presence of a 100-fold excess of common interferents. The practical application of the modified electrode was demonstrated by determining the nitrite ion concentration in water samples.
Collapse
Affiliation(s)
- Srinivasan Kesavan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India (c)CSIR-Central Electrochemical Research Institute-Chennai Centre,CSIR-Madras Complex, Taramani, Chennai-600 113, India
| | - Deivasigamani Ranjith Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; ECSIR-Central Electrochemical Research Institute-Chennai Centre, CSIR-Madras Complex, Taramani, Chennai-600 113, India
| | - Marjorie Lara Baynosa
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
9
|
Zhao Z, Xia Z, Liu C, Huang H, Ye W. Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.185] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
A novel electrochemical sensor based on Ag nanoparticles decorated multi-walled carbon nanotubes for applied determination of nitrite. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Ensafi AA, Fattahi-Sedeh S, Jafari-Asl M, Rezaei B. Thionine-functionalized graphene oxide, new electrocatalyst for determination of nitrite. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1056-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|