1
|
Sakkani N, Jha DK, Sadiq N, Zhao JCG. Organocatalytic synthesis of β-enaminyl radicals as single-electron donors for phenyliodine(III) dicarboxylates: direct one-pot alkylation-aminoxidation of styrenes. Org Biomol Chem 2023; 21:761-767. [PMID: 36594169 DOI: 10.1039/d2ob01826h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A direct one-pot alkylation-aminoxidation of styrene derivatives was achieved using in situ-generated alkyl and N-oxyl radicals. The corresponding O-alkylated hydroxylamine derivatives were obtained in moderate to good yields. The reaction features the generation of the alkyl radicals from phenyliodine(III) dicarboxylates via an organocatalytic process, the use of phenyliodine(III) dicarboxylates as the source of the alkyl radicals and oxidants for the generation of N-oxyl radicals, and the first generation of the β-enaminyl radicals via a HAT process and their use as single-electron donors.
Collapse
Affiliation(s)
- Nagaraju Sakkani
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Dhiraj Kumar Jha
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Nouraan Sadiq
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| |
Collapse
|
2
|
He SJ, Zhu S, Qiu SQ, Ding WY, Cheng JK, Xiang SH, Tan B. Phosphoric Acid-Catalyzed Enantioselective Synthesis of Axially Chiral Anthrone-based Compounds. Angew Chem Int Ed Engl 2023; 62:e202213914. [PMID: 36346195 DOI: 10.1002/anie.202213914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/11/2022]
Abstract
Anthrones and analogues are structural cores shared by diverse pharmacologically active natural and synthetic compounds. The sp2 -rich nature imposes inherent obstruction to introduce stereogenic element onto the tricyclic aromatic backbone. In our pursuit to expand the chemical space of axial chirality, a novel type of axially chiral anthrone-derived skeleton was discovered. This work establishes oxime ether as suitable functionality to furnish axial chirality on symmetric anthrone skeletons through stereoselective condensation of the carbonyl entity with long-range chirality control. The enantioenriched anthrones could be elaborated into dibenzo-fused seven-membered N-heterocycles containing well-defined stereogenic center via Beckmann rearrangement with axial-to-point chirality conversion.
Collapse
Affiliation(s)
- Shi-Jiang He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuai Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng-Qi Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei-Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Kee Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Fernandes R, Mhaske K, Balhara R, Jindal G, Narayan R. Copper-Catalyzed Aerobic Cross-Dehydrogenative Coupling of β-Oxime Ether Furan with Indole. Chem Asian J 2022; 17:e202101369. [PMID: 35146932 DOI: 10.1002/asia.202101369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/30/2022] [Indexed: 11/09/2022]
Abstract
Heterobiaryls serve as relevant structural motifs in many fields of high applicative importance such as drugs, agrochemicals, organic functional materials etc. Cross-dehydrogenative coupling involving direct oxidation of two C-H bonds to construct a C-C bond is actively being pursued as a more benign and 'greener' alternative for synthesizing heterobiaryls. Herein, we report a Cu(I)-catalyzed cross-dehydrogenative coupling of indoles and furans, two of the most important aromatic heterocycles using air as the terminal oxidant. The reaction proceeds with regio- and chemoselectivity to give the cross-coupled products in good to excellent yields generally. A broad substrate scope with respect to both the coupling partners has been demonstrated to prove the generality of this reaction. This represents the hitherto unexplored cross-dehydrogenative coupling methodology to obtain an indole-furan biaryl motif.
Collapse
Affiliation(s)
- Rushil Fernandes
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| | - Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| |
Collapse
|
4
|
Tran T, Nguyen A, Torres D, Pham MT, Petit AS. Computational Investigation of the Formation of Substituted Isoindole N-Oxides through the Photo-oxidative Cyclization of 2'-Alkynylacetophenone Oximes. J Org Chem 2021; 86:15020-15032. [PMID: 34668707 DOI: 10.1021/acs.joc.1c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our recently published joint experiment-theory study of the photo-oxidative intramolecular cyclization of 2'-alkynylacetophenone oximes, performed in collaboration with the de Lijser group, presented the first reported formation of isoindole N-oxides. That study focused on determining a mechanistic explanation for the unexpected chemistry observed when three 2'-alkynylacetophenone oximes were photo-oxidized with 9,10-dicyanoanthracene (DCA), specifically the derivatives with a phenyl, isopropyl, or n-butyl substituent at the alkynyl group. Here, we use density functional theory to develop a broader understanding of the scope of this chemistry. In particular, we demonstrate that substituents on the alkynyl group and on the central benzene ring can significantly modulate the thermodynamic driving force for oxime radical cation generation when DCA is used as the photosensitizer. In contrast, substituents are shown to have a small impact on the chemical reactivity of the radical cation intermediates. In particular, 5-exo radical cation cyclization, which ultimately results in an isoindole N-oxide product, is always kinetically and sometimes also thermodynamically preferred over 6-endo radical cation cyclization, which would produce an isoquinoline N-oxide product. Overall, this study provides mechanistic insights into the diversity of isoindole N-oxides that can be produced through the photo-oxidative cyclization of 2'-alkynylacetophenone oximes.
Collapse
Affiliation(s)
- Thao Tran
- Department of Chemistry and Biochemistry, California State University - Fullerton, Fullerton, California 92834-6866, United States
| | - Anh Nguyen
- Department of Chemistry and Biochemistry, California State University - Fullerton, Fullerton, California 92834-6866, United States
| | - Danielle Torres
- Department of Chemistry and Biochemistry, California State University - Fullerton, Fullerton, California 92834-6866, United States
| | - My Tien Pham
- Department of Chemistry and Biochemistry, California State University - Fullerton, Fullerton, California 92834-6866, United States
| | - Andrew S Petit
- Department of Chemistry and Biochemistry, California State University - Fullerton, Fullerton, California 92834-6866, United States
| |
Collapse
|
5
|
PrVO4/SnD NPs as a Nanocatalyst for Carbon Dioxide Fixation to Synthesis Benzimidazoles and 2-Oxazolidinones. Catal Letters 2020. [DOI: 10.1007/s10562-020-03410-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Khatun R, Biswas S, Biswas IH, Riyajuddin S, Haque N, Ghosh K, Islam SM. Cu-NPs@COF: A potential heterogeneous catalyst for CO2 fixation to produce 2-oxazolidinones as well as benzimidazoles under moderate reaction conditions. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101180] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Paveliev SA, Churakov AI, Alimkhanova LS, Segida OO, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of
O
‐Phthalimide Oximes from
α
‐Azido Styrenes
via
Radical Sequence: Generation, Addition and Recombination of Imide‐
N
‐Oxyl and Iminyl Radicals with C−O/N−O Bonds Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Artem I. Churakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Liliya S. Alimkhanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| |
Collapse
|
8
|
Ulloa LK, Kong S, Vigil AM, Petit AS. Computational Investigation of Substituent Effects on the Formation and Intramolecular Cyclization of 2'-Arylbenzaldehyde and 2'-Arylacetophenone Oxime Ether Radical Cations. J Org Chem 2019; 84:14659-14669. [PMID: 31687813 DOI: 10.1021/acs.joc.9b02240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This work describes our computational study of substituent effects on the formation and cyclization of 2'-arylbenzaldehyde and 2'-arylacetophenone oxime ether radical cations. Recent experimental work by de Lijser and co-workers has demonstrated that these reactive intermediates, which are generated through photoinduced electron transfer (PET) with a photosensitizer, undergo intramolecular cyclization to yield substituted phenanthridines. The experimental study further showed correlations between the yield of cyclized products and the Hammett σPara+ parameter of the substituent on the aryl group, with both strongly electron-withdrawing and electron-donating substituents shown to significantly reduce the product yield. By analyzing the ΔGPET associated with radical cation formation as well as the thermodynamics and kinetics of radical cation cyclization, we provide an explanation for these observations. We then computationally extend this mechanistic analysis to 2'-arylbenzaldehyde oxime ethers with substituents also present on the central benzene ring and show that such substituents generally have a larger impact on the PET-induced cyclization than those on the aryl group. Overall, this work extends our understanding of the overall scope of this photooxidative route toward substituted phenanthridines as well as makes clear predictions as to how the formation of oxime ether radical cations can be tuned by substituents.
Collapse
Affiliation(s)
- Laura K Ulloa
- Department of Chemistry and Biochemistry , California State University , Fullerton , California 92834-6866 , United States
| | - Sung Kong
- Department of Chemistry and Biochemistry , California State University , Fullerton , California 92834-6866 , United States
| | - Alec M Vigil
- Department of Chemistry and Biochemistry , California State University , Fullerton , California 92834-6866 , United States
| | - Andrew S Petit
- Department of Chemistry and Biochemistry , California State University , Fullerton , California 92834-6866 , United States
| |
Collapse
|
9
|
Abstract
An efficient and rapid synthesis of a new class of chiral oxime ethers has been achieved via
two-step reaction in which the first step is the reaction of oximes 1a-f with ethyl bromoacetate in the
presence of sodium hydride to give oxime ethers 2a-f which are subsequently, in the second step, reacted
with different commercially available chiral amines under microwave irradiation conditions to
give compounds 3a-l in good to excellent yields. Through this method, we have observed a decrease in
reaction time and excellent yields than the previously described conventional method.
Collapse
Affiliation(s)
- Asma Mehrez
- Laboratory of Asymmetric Organic Synthesis and Homogeneous Catalysis (UR11ES56), Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Dalila Mtat
- Laboratory of Asymmetric Organic Synthesis and Homogeneous Catalysis (UR11ES56), Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Ridha Touati
- Laboratory of Asymmetric Organic Synthesis and Homogeneous Catalysis (UR11ES56), Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
10
|
Hosseinian A, Ahmadi S, Mohammadi R, Didehban K, Vessally E. A Facile and Promising Synthetic Strategy toward Functionalized 2H-Chromenes from Aryl Propargyl Ethers. A Review. ORG PREP PROCED INT 2019. [DOI: 10.1080/00304948.2018.1537306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
| | - Sheida Ahmadi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| | - Robab Mohammadi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| | - Khadijeh Didehban
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| |
Collapse
|
11
|
Arshadi S, Banaei A, Ebrahimiasl S, Monfared A, Vessally E. Solvent-free incorporation of CO2 into 2-oxazolidinones: a review. RSC Adv 2019; 9:19465-19482. [PMID: 35519371 PMCID: PMC9065275 DOI: 10.1039/c9ra00551j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/04/2019] [Indexed: 01/04/2023] Open
Abstract
This review is an attempt to give an overview on the recent advances and developments in the synthesis of 2-oxazolidinone frameworks through carbon dioxide (CO2) fixation reactions under solvent-free conditions. The cycloaddition of CO2 to aziridine derivatives is discussed first. This is followed by carboxylative cyclization of N-propargylamines with CO2 and three-component coupling of epoxides, amines, and CO2. Finally, cycloaddition of CO2 to propargylic alcohols and amines will be covered at the end of the review. The literature has been surveyed up until the end of 2018. This review is an overview on the recent advances in the synthesis of 2-oxazolidinones through CO2 fixation reactions under solvent-free conditions.![]()
Collapse
|
12
|
Vessally E, Nikpasand M, Ahmadi S, Delir Kheirollahi Nezhad P, Hosseinian A. Transition metal-catalyzed intramolecular cyclization of N-Boc-protected propargyl/ethynyl amines: a novel and convenient access to 2-oxazolidinone/oxazolone derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1542-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Kosmalski T, Studzińska R, Daniszewska N, Ullrich M, Sikora A, Marszałł M, Modzelewska‐Banachiewicz B. Study of the Room-Temperature Synthesis of Oxime Ethers by using a Super Base. ChemistryOpen 2018; 7:551-557. [PMID: 30065906 PMCID: PMC6058178 DOI: 10.1002/open.201800098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
In this study, we present a convenient method for the synthesis of oxime ethers by reacting oximes with various chlorides (alkyl, functionalized alkyl, and benzyl) and with the subsequent use of a super base-pulverized potassium hydroxide in DMSO. The reactions take place at room temperature and the products are obtained in high yields. The final products were received within 2 min to 3 h. In addition, the compounds do not require chromatographic separation. The structure elucidation of the titled compounds was performed by using 1H NMR and 13C NMR spectroscopy as well as mass spectrometry. The presented method of synthesis for oxime ethers is environmentally friendly, because neither water cooling or heating of the reaction mixture/solvents (necessary for chromatographic purification) is required. The synthesis can be carried out very easily on a large scale.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic ChemistryFaculty of Pharmacy Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Renata Studzińska
- Department of Organic ChemistryFaculty of Pharmacy Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Natalia Daniszewska
- Department of Organic ChemistryFaculty of Pharmacy Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Małgorzata Ullrich
- Department of Organic ChemistryFaculty of ChemistryNicolaus Copernicus UniversityGagarina 787-100ToruńPoland
| | - Adam Sikora
- Medicinal Chemistry Department Faculty of Pharmacy, Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Michał Marszałł
- Medicinal Chemistry Department Faculty of Pharmacy, Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Bożena Modzelewska‐Banachiewicz
- Department of Organic ChemistryFaculty of Pharmacy Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| |
Collapse
|
14
|
Dehydrative condensation of β-aminoalcohols with CO2: An environmentally benign access to 2-oxazolidinone derivatives. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Copper-catalysed synthesis of 3,5-disubstituted isoxazoles enabled by pyridinyl benzimidazol (PBI) as a bidentate N-chelating ligand under mild conditions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-017-1280-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
|
17
|
Vessally E, Didehban K, Babazadeh M, Hosseinian A, Edjlali L. Chemical fixation of CO2 with aniline derivatives: A new avenue to the synthesis of functionalized azole compounds (A review). J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Chemical fixation of CO2 to 2-aminobenzonitriles: A straightforward route to quinazoline-2,4(1H,3H)-diones with green and sustainable chemistry perspectives. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Samundeeswari S, Shastri LA, Chougala BM, Holiyachi M, Kulkarni MV. Unusual transformation of benzil monooxime coumarin ethers into carboxamides. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Arshadi S, Vessally E, Edjlali L, Hosseinzadeh-Khanmiri R, Ghorbani-Kalhor E. N-Propargylamines: versatile building blocks in the construction of thiazole cores. Beilstein J Org Chem 2017; 13:625-638. [PMID: 28487756 PMCID: PMC5389205 DOI: 10.3762/bjoc.13.61] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022] Open
Abstract
Thiazoles and their hydrogenated analogues are not only key structural units in a wide variety of natural products but they also constitute important building blocks in medicinal chemistry. Therefore, the synthesis of these compounds using new protocols is always interesting. It is well known that N-propargylamines can undergo a number of cyclization reactions to produce various nitrogen-containing heterocycles. In this review, we highlight the most important developments on the synthesis of thiazole and its derivatives starting from N-propargylamines. This review will be helpful in the development of improved methods for the synthesis of natural and biologically important compounds.
Collapse
Affiliation(s)
- S Arshadi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - E Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - L Edjlali
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - E Ghorbani-Kalhor
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
21
|
Vessally E, Hosseinzadeh-Khanmiri R, Ghorbani-Kalhor E, Es'haghi M, Bekhradnia A. Domino carbometalation/coupling reactions of N-arylpropiolamides: a novel and promising synthetic strategy toward stereocontrolled preparation of highly substituted 3-methyleneindolinones. RSC Adv 2017. [DOI: 10.1039/c7ra01371j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
3-Methyleneindolinone derivatives are important structural motifs found in many compounds of natural occurrence and pharmacological significance.
Collapse
Affiliation(s)
- E. Vessally
- Department of Chemistry
- Payame Noor University
- Tehran
- Iran
| | | | | | - M. Es'haghi
- Department of Chemistry
- Islamic Azad University
- Tabriz
- Iran
| | - A. Bekhradnia
- Pharmaceutical Sciences Research Center
- Department of Medicinal Chemistry
- Mazandaran University of Medical Sciences
- Sari
- Iran
| |
Collapse
|
22
|
Arshadi S, Vessally E, Edjlali L, Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R. N-Propargylic β-enaminocarbonyls: powerful and versatile building blocks in organic synthesis. RSC Adv 2017. [DOI: 10.1039/c7ra00746a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitrogen-containing heterocyclic compounds are not only prevalent in an extensive number of natural products and synthetic pharmaceuticals but are also used as building blocks in organic synthesis.
Collapse
Affiliation(s)
| | | | - Ladan Edjlali
- Department of Chemistry
- Tabriz Branch
- Islamic Azad University
- Tabriz
- Iran
| | | | | |
Collapse
|
23
|
Soleimani-Amiri S, Vessally E, Babazadeh M, Hosseinian A, Edjlali L. Intramolecular cyclization of N-allyl propiolamides: a facile synthetic route to highly substituted γ-lactams (a review). RSC Adv 2017. [DOI: 10.1039/c7ra03075d] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of simple and efficient methods for construction of substituted γ-lactams is an important synthetic goal because such ring skeletons are present in numerous natural compounds that display diverse biological activities.
Collapse
Affiliation(s)
| | | | | | - Akram Hosseinian
- Department of Engineering Science
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Ladan Edjlali
- Department of Chemistry
- Tabriz Branch
- Islamic Azad University
- Tabriz
- Iran
| |
Collapse
|
24
|
Vessally E, Hosseinian A, Edjlali L, Bekhradnia A, Esrafili MD. New route to 1,4-oxazepane and 1,4-diazepane derivatives: synthesis from N-propargylamines. RSC Adv 2016. [DOI: 10.1039/c6ra20718a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
N-Propargylamines are one of the most useful and versatile building blocks in organic synthesis that are successfully transformed into many significant N-heterocycles.
Collapse
Affiliation(s)
| | - Akram Hosseinian
- Department of Engineering Science
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Ladan Edjlali
- Department of Chemistry
- Tabriz Branch
- Islamic Azad University
- Tabriz
- Iran
| | - Ahmadreza Bekhradnia
- Pharmaceutical Sciences Research Center
- Department of Medicinal Chemistry
- Mazandaran University of Medical Sciences
- Sari
- Iran
| | | |
Collapse
|
25
|
Vessally E, Hosseinian A, Edjlali L, Bekhradnia A, Esrafili MD. New page to access pyridine derivatives: synthesis from N-propargylamines. RSC Adv 2016. [DOI: 10.1039/c6ra08720e] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The pyridine is one of the simplest, yet most important N-heterocycles.
Collapse
Affiliation(s)
| | - Akram Hosseinian
- Department of Engineering Science
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Ladan Edjlali
- Department of Chemistry
- Islamic Azad University
- Tabriz
- Iran
| | - Ahmadreza Bekhradnia
- Pharmaceutical Sciences Research Center
- Department of Medicinal Chemistry
- Mazandaran University of Medical Sciences
- Sari
- Iran
| | | |
Collapse
|