1
|
Muchakayala SK, Katari NK, Saripella KK, Schaaf H, Marisetti VM, Kowtharapu LP, Jonnalagadda SB. AQbD based green UPLC method to determine mycophenolate mofetil impurities and Identification of degradation products by QToF LCMS. Sci Rep 2022; 12:19138. [PMID: 36352016 PMCID: PMC9646803 DOI: 10.1038/s41598-022-22998-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
We report an ideal method for quantifying impurities in mycophenolate mofetil drug substances and their oral suspension preparations. We developed a systematic and eco-friendly analytical approach utilizing quality by design (QbD) and green chemistry principles. Initially, the critical method parameters (CMPs) were screened using a D-optimal design. The robust final method conditions were optimized using a systematic central composite design (CCD). Through graphical and numerical optimization, the protocol conditions were augmented. The pH of mobile phase buffer (25 mM KH2PO4) (MP-A), initial gradient composition (% MP-A), flow rate (mL min-1), and column oven temperatures (°C) are 4.05, 87, 0.4, and 30, respectively. The best possible separation between the critical pairs was achieved while using the Waters Acquity UPLC BEH C18 (100 × 2.1) mm, 1.7 µm analytical column. A mixture of water and acetonitrile in the ratio of 30:70 (v/v) was used as mobile phase-B for the gradient elution. The analytical method was validated in agreement with ICH and USP guidelines. The specificity results revealed that no peaks interfered with the impurities and MPM. The mean recovery of the impurities ranged between 96.2 and 102.7%, and the linearity results r > 0.999 across the range of LOQ - 150%. The precision results (%RSD) ranged between 0.8 and 4.5%. The degradation products formed during the base-induced degradation were identified as isomers of mycophenolic acid and sorbitol esters using Q-ToF LC-MS and their molecular and fragment ion peaks. The developed method eco-friendliness and greenness were assessed using analytical greenness (AGREE), green analytical procedure index (GAPI), and analytical eco score, and found it is green.
Collapse
Affiliation(s)
- Siva Krishna Muchakayala
- Douglas Pharma US Inc, 1035 Louis Drive, Warminster, PA 18974 USA ,Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana 502329 India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana 502329 India ,grid.16463.360000 0001 0723 4123School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000 South Africa
| | | | - Henele Schaaf
- Douglas Pharma US Inc, 1035 Louis Drive, Warminster, PA 18974 USA
| | - Vishnu Murthy Marisetti
- Analytical Research and Development, ScieGen Pharmaceuticals Inc, 89 Arkay Drive, Hauppauge, NY 11788 USA
| | - Leela Prasad Kowtharapu
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana 502329 India
| | - Sreekantha Babu Jonnalagadda
- grid.16463.360000 0001 0723 4123School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000 South Africa
| |
Collapse
|
2
|
El-Shafie AS, Yousef A, El-Azazy M. Application of Plackett–Burman Design for Spectrochemical Determination of the Last-Resort Antibiotic, Tigecycline, in Pure Form and in Pharmaceuticals: Investigation of Thermodynamics and Kinetics. Pharmaceuticals (Basel) 2022; 15:ph15070888. [PMID: 35890186 PMCID: PMC9320474 DOI: 10.3390/ph15070888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Tigecycline (TIGC) reacts with 7,7,8,8-tetracyanoquinodimethane (TCNQ) to form a bright green charge transfer complex (CTC). The spectrum of the CTC showed multiple charge transfer bands with a major peak at 843 nm. The Plackett–Burman design (PBD) was used to investigate the process variables with the objective being set to obtaining the maximum absorbance and thus sensitivity. Four variables, three of which were numerical (temperature—Temp; reagent volume—RV; reaction time—RT) and one non-numerical (diluting solvent—DS), were studied. The maximum absorbance was achieved using a factorial blend of Temp: 25 °C, RV: 0.50 mL, RT: 60 min, and acetonitrile (ACN) as a DS. The molecular composition that was investigated using Job’s method showed a 1:1 CTC. The method’s validation was performed following the International Conference of Harmonization (ICH) guidelines. The linearity was achieved over a range of 0.5–10 µg mL−1 with the limits of detection (LOD) and quantification (LOQ) of 166 and 504 ng mL−1, respectively. The method was applicable to TIGC per se and in formulations without interferences from common additives. The application of the Benesi–Hildebrand equation revealed the formation of a stable complex with a standard Gibbs free energy change (∆G°) value of −26.42 to −27.95 kJ/mol. A study of the reaction kinetics revealed that the CTC formation could be best described using a pseudo-first-order reaction.
Collapse
|
3
|
Tafazoli H, Safaei M, Shishehbore MR. A New Sensitive Method for Quantitative Determination of Cisplatin in Biological Samples by Kinetic Spectrophotometry. ANAL SCI 2020; 36:1217-1222. [PMID: 32418934 DOI: 10.2116/analsci.20p118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study describes a kinetic spectrophotometric method for accurate, sensitive and rapid determination of cisplatin in biofluids. The developed method is based on the inhibitory effect of cisplatin on the oxidization of Janus Green by bromate in acidic media. The change in absorbance as the criteria of the oxidation reaction was followed spectrophotometrically. To obtain the highest rate of sensitivity, efficient reaction parameters were optimized. Under optimum experimental conditions, a calibration graph was obtained linearly over the range 10.0 - 5750.0 μg L-1 and the limit of detection (3sb/m) was 4.2 μg L-1 of cisplatin. The interfering effect of diverse species was investigated. The developed method was used for the quantification of cisplatin in bio fluids of patients treated with cisplatin, spiked bio fluids and pharmaceutical samples and yielded satisfactory results.
Collapse
|
4
|
Facile fabrication of a novel disposable pencil graphite electrode for simultaneous determination of promising immunosuppressant drugs mycophenolate mofetil and tacrolimus in human biological fluids. Anal Bioanal Chem 2019; 412:355-364. [DOI: 10.1007/s00216-019-02245-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|