1
|
Yan J, Huang J, Peng S, Sun D, Lu W, Song Z, Ma J, You J, Fan H, Chen L, Li J. Recent advances in molecular-imprinting-based solid-phase microextraction for determination of pharmaceutical residues. J Chromatogr A 2025; 1754:466016. [PMID: 40349500 DOI: 10.1016/j.chroma.2025.466016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Pharmaceutical residues usually exist in various complicated matrices at trace levels, but pose potential threats to human health and ecological environment. Recognition and determination of the residues are important and urgent. Therefore, efficient sample pretreatment techniques become a research hotspot for the sensitive and precise determination by chromatography and mass spectrometry. Molecular-imprinting-based solid-phase microextraction (MI-SPME) combines the rapidity, high enrichment and solvent-free property of SPME with the specific recognition and selective adsorption ability of molecularly imprinted polymers (MIPs), and shows significant advantages in the highly selective separation and enrichment of drug residues in complex samples. Herein, we review recent advances in MI-SPME for determination of pharmaceutical residues since 2019. Firstly, the basic characteristics and operation process of SPME are briefly introduced, and then the polymerization methods of MIPs including free radical polymerization, in-situ polymerization and sol-gel polymerization, and new imprinting technologies and strategies including surface imprinting, nano-imprinting, dummy template, multi-template/functional monomer imprinting and stimuli-responsive imprinting, are comprehensively overviewed. Then, various modes of MI-SPME device are meticulously discussed, mainly including MIPs-coated fiber SPME, MIPs-based in-tube SPME, dispersible SPME, MIPs in-tip SPME, MIPs stir bar sorptive extraction, and MIPs thin film microextraction. Subsequently, typical application cases of MI-SPME coupled with chromatography and mass spectrometry for the determination of drug residues are summarized, in the fields of food safety, biological medicine and environmental monitoring, specially mentioning chiral drug detection and matrix effects and interferences. Finally, the possible challenges of MI-SPME in drug residue detection are presented, and the research prospects and development trends of MI-SPME are proposed.
Collapse
Affiliation(s)
- Jingyi Yan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jingying Huang
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Siyuan Peng
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dani Sun
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenhui Lu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhihua Song
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaying Fan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Lingxin Chen
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- Shandong Key Laboratory of Coastal Environmental Processes, Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
4
|
Jouyban A, Farajzadeh MA, Afshar Mogaddam MR, Nemati M, Khoubnasabjafari M, Jouyban-Gharamaleki V. Molecularly imprinted polymer based-solid phase extraction combined with dispersive liquid–liquid microextraction using new deep eutectic solvent; selective extraction of valproic acid from exhaled breath condensate samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|