1
|
Bashar BS, Kareem HA, Hasan YM, Ahmad N, Alshehri AM, Al-Majdi K, Hadrawi SK, AL Kubaisy MMR, Qasim MT. Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds. Front Chem 2022; 10:1014731. [PMID: 36300031 PMCID: PMC9589061 DOI: 10.3389/fchem.2022.1014731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Using the microwave-assisted method, novel Fe3O4/Zn-metal organic framework magnetic nanostructures were synthesized. The crystallinity, thermal stability, adsorption/desorption isotherms, morphology/size distribution, and magnetic hysteresis of synthesized Fe3O4/Zn-metal organic framework magnetic nanostructures were characterized by XRD patterns, TGA curve, BET adsorption/desorption technique, SEM image, and VSM curve, respectively. After confirming the Fe3O4/Zn-metal organic framework magnetic nanostructures, its antimicrobial properties against Gram-positive bacterial, Gram-negative bacterial, and fungal strains based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) values were studied. The MIC values in antimicrobial activity for Gram-positive and Gram-negative bacterial strains, between 16–128 μg/ml, and for fungal strain, 128 μg/ml were observed. The results showed that the high specific surface area of Fe3O4/Zn-metal organic framework magnetic nanostructures caused the antimicrobial power of nanoparticles to be high, and the observed antimicrobial effects were higher than some known commercial antimicrobial drugs. Another advantage of the specific surface area of Fe3O4/Zn-metal organic framework magnetic nanostructures was its high catalytic properties in the three-component reaction of isatin, malononitrile, and dimedone. New spiro [indoline-pyranopyrimidines] derivatives were synthesized with high efficiency. The catalytic activity results of Fe3O4/Zn-metal organic framework magnetic nanostructures showed that, in addition to recyclability, derivatives could be synthesized in less time than previously reported methods. The results of investigating the catalytic activity of Fe3O4/Zn-metal organic framework magnetic nanostructures showed that the spiro [indoline-pyranopyrimidines] derivatives were synthesized in the time range of 10–20 min with an efficiency of over 85%. As a final result, it can be concluded that the microwave synthesis method improves the unique properties of magnetic nanostructures, especially its specific surface area, and has increased its efficiency.
Collapse
Affiliation(s)
- Bashar S. Bashar
- Department of Computing Technologies Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Hawraa A. Kareem
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Nafis Ahmad
- Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
| | - A. M. Alshehri
- Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kadhum Al-Majdi
- Department of Biomedical Engineering, Ashur University College, Baghdad, Iraq
- *Correspondence: Kadhum Al-Majdi,
| | - Salema K. Hadrawi
- Refrigeration and Air-conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | | | - Maytham T. Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
2
|
Azarnier SG, Esmkhani M, Dolatkhah Z, Javanshir S. Collagen-coated superparamagnetic iron oxide nanoparticles as a sustainable catalyst for spirooxindole synthesis. Sci Rep 2022; 12:6104. [PMID: 35414646 PMCID: PMC9005729 DOI: 10.1038/s41598-022-10102-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022] Open
Abstract
In this work, a novel magnetic organic–inorganic hybrid catalyst was fabricated by encapsulating magnetite@silica (Fe3O4@SiO2) nanoparticles with Isinglass protein collagen (IGPC) using epichlorohydrin (ECH) as a crosslinking agent. Characterization studies of the prepared particles were accomplished by various analytical techniques specifically, Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Brunauer−Emmett−Teller (BET) analysis. The XRD results showed a crystalline and amorphous phase which contribute to magnetite and isinglass respectively. Moreover, the formation of the core/shell structure had been confirmed by TEM images. The synthesized Fe3O4@SiO2/ECH/IG was applied as a bifunctional heterogeneous catalyst in the synthesis of spirooxindole derivatives through the multicomponent reaction of isatin, malononitrile, and C-H acids which demonstrated its excellent catalytic properties. The advantages of this green approach were low catalyst loading, short reaction time, stability, and recyclability for at least four runs.
Collapse
Affiliation(s)
- Shima Ghanbari Azarnier
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Maryam Esmkhani
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Zahra Dolatkhah
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Shahrzad Javanshir
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
3
|
Zare M, Moradi L. Modification of magnetic mesoporous N-doped silica nanospheres by CuO NPs: a highly efficient catalyst for the multicomponent synthesis of some propellane indeno indole derivatives. RSC Adv 2022; 12:34822-34830. [DOI: 10.1039/d2ra06221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Herein, magnetic mesoporous N-doped silica nanospheres decorated by CuO nanoparticles (M-MNS/CuO) were prepared and used for the green and efficient synthesis of some [3.3.3] propellane indeno[1,2-b] indole derivatives.
Collapse
Affiliation(s)
- Mina Zare
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 8731753153, Kashan, Iran
| | - Leila Moradi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 8731753153, Kashan, Iran
| |
Collapse
|
4
|
Toorbaf M, Moradi L. Preparation of GO/SiO 2/PEA as a new solid base catalyst for the green synthesis of some spirooxindole derivatives. RSC Adv 2021; 11:21840-21850. [PMID: 35478825 PMCID: PMC9034106 DOI: 10.1039/d1ra02850b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 01/20/2023] Open
Abstract
Efficient and green one pot multi component synthesis of some spirooxindole derivatives in the presence of graphene oxide functionalized with 2-(1-piperazinyl) ethylamine (GO/SiO2/PEA) as a solid base catalyst was studied. GO/SiO2/PEA has been obtained through a two step reaction and characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), thermo gravimetric analysis (TGA), Raman spectroscopy and X-ray diffraction (XRD). Green reaction conditions, short reaction times, reusable catalyst and a high to excellent yield of products are some of the advantageous of the presented method.
Collapse
Affiliation(s)
- Mahla Toorbaf
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 8731753153 Kashan I. R. Iran
| | - Leila Moradi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 8731753153 Kashan I. R. Iran
| |
Collapse
|
5
|
Madhvi, Utreja D, Sharma S. Barbiturates: A Review of Synthesis and Antimicrobial Research Progress. Curr Org Synth 2021; 19:31-55. [PMID: 33855946 DOI: 10.2174/1570179418666210414104857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Barbituric acid and its derivatives have turned heads for several years as an indispensable class of compounds in the pharmaceutical industry because of their vast assortment of biological activities such as anticonvulsants, hypnotics, anti-diabetic, antiviral, anti-AIDS, anti-cancer, anti-microbial and anti-oxidant etc. Plethoras of studies have shed light on the properties, synthesis, and reactivity of these compounds. The depiction of multiple biological activities by barbiturates compelled us and by virtue of which herein we have mediated over the progress of synthesis of numerous kinds of compounds derived from barbituric acid with well-known and typical examples from 2016 to the present. OBJECTIVE The review focuses on the advancements in methods of synthesis of barbituric acid derivatives and their applications as antimicrobial agents. CONCLUSION This review will help future researchers to analyze the previous studies and to explore new compounds for the development of efficient antimicrobial drugs.
Collapse
Affiliation(s)
- Madhvi
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| |
Collapse
|
6
|
Kamali F, Shirini F. An efficient one-pot multi-component synthesis of spirooxindoles using Fe3O4/g-C3N4 nanocomposite as a green and reusable catalyst in aqueous media. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129654] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Brandão P, Marques CS, Carreiro EP, Pineiro M, Burke AJ. Engaging Isatins in Multicomponent Reactions (MCRs) - Easy Access to Structural Diversity. CHEM REC 2021; 21:924-1037. [PMID: 33599390 DOI: 10.1002/tcr.202000167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Multicomponent reactions (MCRs) are a valuable tool in diversity-oriented synthesis. Its application to privileged structures is gaining relevance in the fields of organic and medicinal chemistry. Isatin, due to its unique reactivity, can undergo different MCRs, affording multiple interesting scaffolds, namely oxindole-derivatives (including spirooxindoles, bis-oxindoles and 3,3-disubstituted oxindoles) and even, under certain conditions, ring-opening reactions occur that leads to other heterocyclic compounds. Over the past few years, new methodologies have been described for the application of this important and easily available starting material in MCRs. In this review, we explore these novelties, displaying them according to the structure of the final products obtained.
Collapse
Affiliation(s)
- Pedro Brandão
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal.,LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Elisabete P Carreiro
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - M Pineiro
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Anthony J Burke
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal.,University of Evora, Department of Chemistry, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| |
Collapse
|
8
|
Faroughi Niya H, Hazeri N, Fatahpour M. Synthesis, characterization, and application of CoFe
2
O
4
@amino‐2‐naphthol‐4‐sulfonic acid as a novel and reusable catalyst for the synthesis of spirochromene derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Homayoun Faroughi Niya
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Nourallah Hazeri
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Maryam Fatahpour
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| |
Collapse
|
9
|
Youseftabar-Miri L, Hosseinjani-Pirdehi H, Akrami A, Hallajian S. Recent investigations in the synthesis of spirooxindole derivatives by Iranian researchers. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01921-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
A transition metal-free cascade reaction using heterogeneous tin(IV)oxide catalyzed and iodine promoted synthesis of 3-aroylimidazo[1,2-a]pyridines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Zhou LM, Qu RY, Yang GF. An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin Drug Discov 2020; 15:603-625. [PMID: 32106717 DOI: 10.1080/17460441.2020.1733526] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Spirooxindole, a unique and versatile scaffold, has been widely studied in some fields such as pharmaceutical chemistry and synthetic chemistry. Especially in the application of medicine, quite a few compounds featuring spirooxindole motif have displayed excellent and broad pharmacological activities. Many identified candidate molecules have been used in clinical trials, showing promising prospects.Areas covered: This article offers an overview of different applications and developments of spirooxindoles (including the related natural products and their derivatives) in the process of drug innovation, including such as in anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, antimalarial, and antiviral activities. Furthermore, the crucial structure-activity relationships, molecular mechanisms, pharmacokinetic properties, and main synthetic methods of spirooxindoles-based derivatives are also reviewed.Expert opinion: Recent progress in the biological activity profiles of spirooxindole derivatives have demonstrated their significant position in present-day drug discovery. Furthermore, we believe that the multidirectional development of novel drugs containing this core scaffold will continue to be the research hotspot in medicinal chemistry in the future.
Collapse
Affiliation(s)
- Li-Ming Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
12
|
Kazemi M. Based on MFe2O4 (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1723109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mosstafa Kazemi
- Chemistry Department, Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|