1
|
Soleimani B, Asl AH, Khoshandam B, Hooshyari K. Enhanced performance of nanocomposite membrane developed on sulfonated poly (1, 4-phenylene ether-ether-sulfone) with zeolite imidazole frameworks for fuel cell application. Sci Rep 2023; 13:8238. [PMID: 37217638 DOI: 10.1038/s41598-023-34953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Proton exchange membrane fuel cells (PEMFC) have received a lot of interest and use metal-organic frameworks (MOF)/polymer nanocomposite membranes. Zeolite imidazole framework-90 (ZIF-90) was employed as an addition in the sulfonated poly (1, 4-phenylene ether-ether-sulfone) (SPEES) matrix in order to investigate the proton conductivity in a novel nanocomposite membrane made of SPEES/ ZIF. The high porosity, free surface, and presence of the aldehyde group in the ZIF-90 nanostructure have a substantial impact on enhancing the mechanical, chemical, thermal, and proton conductivity capabilities of the SPEES/ZIF-90 nanocomposite membranes. The results indicate that the utilization of SPEES/ZIF-90 nanocomposite membranes with 3wt% ZIF-90 resulted in enhanced proton conductivity of up to 160 mS/cm at 90 °C and 98% relative humidity (RH). This is a significant improvement compared to the SPEES membrane which exhibited a proton conductivity of 55 mS/cm under the same conditions, indicating a 1.9-fold increase in performance. Furthermore, the SPEES/ZIF-90/3 membrane exhibited a remarkable 79% improvement in maximum power density, achieving a value of 0.52 W/cm2 at 0.5 V and 98% RH, which is 79% higher than that of the pristine SPEES membrane.
Collapse
Affiliation(s)
- Bita Soleimani
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Ali Haghighi Asl
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran.
| | - Behnam Khoshandam
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Khadijeh Hooshyari
- Faculty of Chemistry, Department of Applied Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Bagheri A, Bellani S, Beydaghi H, Eredia M, Najafi L, Bianca G, Zappia MI, Safarpour M, Najafi M, Mantero E, Sofer Z, Hou G, Pellegrini V, Feng X, Bonaccorso F. Functionalized Metallic 2D Transition Metal Dichalcogenide-Based Solid-State Electrolyte for Flexible All-Solid-State Supercapacitors. ACS NANO 2022; 16:16426-16442. [PMID: 36194759 PMCID: PMC9620411 DOI: 10.1021/acsnano.2c05640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Highly efficient and durable flexible solid-state supercapacitors (FSSSCs) are emerging as low-cost devices for portable and wearable electronics due to the elimination of leakage of toxic/corrosive liquid electrolytes and their capability to withstand elevated mechanical stresses. Nevertheless, the spread of FSSSCs requires the development of durable and highly conductive solid-state electrolytes, whose electrochemical characteristics must be competitive with those of traditional liquid electrolytes. Here, we propose an innovative composite solid-state electrolyte prepared by incorporating metallic two-dimensional group-5 transition metal dichalcogenides, namely, liquid-phase exfoliated functionalized niobium disulfide (f-NbS2) nanoflakes, into a sulfonated poly(ether ether ketone) (SPEEK) polymeric matrix. The terminal sulfonate groups in f-NbS2 nanoflakes interact with the sulfonic acid groups of SPEEK by forming a robust hydrogen bonding network. Consequently, the composite solid-state electrolyte is mechanically/dimensionally stable even at a degree of sulfonation of SPEEK as high as 70.2%. At this degree of sulfonation, the mechanical strength is 38.3 MPa, and thanks to an efficient proton transport through the Grotthuss mechanism, the proton conductivity is as high as 94.4 mS cm-1 at room temperature. To elucidate the importance of the interaction between the electrode materials (including active materials and binders) and the solid-state electrolyte, solid-state supercapacitors were produced using SPEEK and poly(vinylidene fluoride) as proton conducting and nonconducting binders, respectively. The use of our solid-state electrolyte in combination with proton-conducting SPEEK binder and carbonaceous electrode materials (mixture of activated carbon, single/few-layer graphene, and carbon black) results in a solid-state supercapacitor with a specific capacitance of 116 F g-1 at 0.02 A g-1, optimal rate capability (76 F g-1 at 10 A g-1), and electrochemical stability during galvanostatic charge/discharge cycling and folding/bending stresses.
Collapse
Affiliation(s)
- Ahmad Bagheri
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Center
for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
| | | | | | - Matilde Eredia
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Leyla Najafi
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | | | - Milad Safarpour
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Maedeh Najafi
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Elisa Mantero
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Zdenek Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Guorong Hou
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Xinliang Feng
- Center
for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Max
Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Francesco Bonaccorso
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| |
Collapse
|
5
|
A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14175440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
Collapse
|
9
|
Hooshyari K, Heydari S, Javanbakht M, Beydaghi H, Enhessari M. Fabrication and performance evaluation of new nanocomposite membranes based on sulfonated poly(phthalazinone ether ketone) for PEM fuel cells. RSC Adv 2020; 10:2709-2721. [PMID: 35496125 PMCID: PMC9048704 DOI: 10.1039/c9ra08893h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 11/21/2022] Open
Abstract
The purpose of this work is to enhance the proton conductivity and fuel cell performance of sulfonated poly(phthalazinone ether ketone) (SPPEK) as a proton exchange membrane through the application of SrTiO3 perovskite nanoparticles. Nanocomposite membranes based on SPPEK and SrTiO3 perovskite nanoparticles were prepared via a casting method. The highest proton conductivity of nanocomposite membranes obtained was 120 mS cm−1 at 90 °C and 95% RH. These enhancements could be related to the hygroscopic structure of SrTiO3 perovskite nanoparticles and the formation of hydrogen bonds between nanoparticles and water molecules. The satisfactory power density, 0.41 W cm−2 at 0.5 V and 85 °C, of the nanocomposite membrane (5 wt% content of nanoparticles) confirms their potential for application in the PEM fuel cells. The purpose of this work is to enhance the proton conductivity and fuel cell performance of sulfonated poly(phthalazinone ether ketone) (SPPEK) as a proton exchange membrane through the application of SrTiO3 perovskite nanoparticles.![]()
Collapse
Affiliation(s)
- Khadijeh Hooshyari
- Department of Applied Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Samira Heydari
- Department of Chemistry, Amirkabir University of Technology Tehran Iran.,Solar Cell and Fuel Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology Tehran Iran
| | - Mehran Javanbakht
- Department of Chemistry, Amirkabir University of Technology Tehran Iran.,Solar Cell and Fuel Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology Tehran Iran
| | - Hossein Beydaghi
- Graphene Labs, Istituto Italiano di Tecnologia 16163 Genova Italy
| | - Morteza Enhessari
- Department of Chemistry, Naragh Branch, Islamic Azad University Naragh Iran
| |
Collapse
|
11
|
Rajabi Z, Javanbakht M, Hooshyari K, Badiei A, Adibi M. High temperature composite membranes based on polybenzimidazole and dendrimer amine functionalized SBA-15 mesoporous silica for fuel cells. NEW J CHEM 2020; 44:5001-5018. [DOI: 10.1039/c9nj05369g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work SBA-15, a melamine-based functionalized SBA-15 mesoporous silica with a dicationic ionic liquid was used in order to improve the physicochemical properties of phosphoric acid doped polybenzimidazole membranes for application in HT-PEMFCs.
Collapse
Affiliation(s)
- Zahra Rajabi
- Department of Chemistry
- Amirkabir University of Technology
- Tehran
- Iran
- Solar Cell and Fuel Cell Lab
| | - Mehran Javanbakht
- Department of Chemistry
- Amirkabir University of Technology
- Tehran
- Iran
- Solar Cell and Fuel Cell Lab
| | - Khadijeh Hooshyari
- Department of Applied Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Mina Adibi
- Gas Transportation and Processing Technology Development Division
- Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| |
Collapse
|
12
|
Hosseinabadi P, Hooshyari K, Javanbakht M, Enhessari M. Synthesis and optimization of nanocomposite membranes based on SPEEK and perovskite nanoparticles for polymer electrolyte membrane fuel cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj03980e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of BaZr0.9Y0.1O3−δ (BZY10) nanoparticles as a perovskite material with a proton conductor oxide structure to enhance the performance of sulfonated poly(ether ether ketone) (SPEEK) in proton exchange membrane fuel cells (PEMFCs) has been investigated in this work.
Collapse
Affiliation(s)
- Parisa Hosseinabadi
- ARC Center of Excellence in Exciton Science
- School of Chemistry
- The University of New South Wales
- Sydney
- Australia
| | - Khadijeh Hooshyari
- Department of Applied Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| | - Mehran Javanbakht
- Department of Chemistry
- Amirkabir University of Technology
- Tehran
- Iran
- Solar Cell and Fuel Cell Lab
| | - Morteza Enhessari
- Department of Chemistry
- Naragh Branch
- Islamic Azad University
- Naragh
- Iran
| |
Collapse
|