1
|
Khaleque M, Ali M, Bacchu M, Mamun M, Hossain M, Hossain M, Aly Saad Aly M, Khan M. Zinc oxide nanorod/rutin modified electrode for the detection of Thiourea in real samples. Heliyon 2023; 9:e20676. [PMID: 37860551 PMCID: PMC10582497 DOI: 10.1016/j.heliyon.2023.e20676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
In this work, a novel electrochemical detection strategy was developed based on a metal-organic framework of zinc oxide nanorod nanoparticles and rutin for selective screening of Thiourea as toxic chemicals. The zinc oxide nanorod were synthesized by following direct chemical precipitation methods and characterized by X-ray diffraction and X-ray photoelectron spectroscopy analysis. The surface of modified electrodes was also characterized by field emission scanning electron microscopes, energy-dispersive X-ray spectroscopy, and attenuated total reflectance flourier transform infrared spectroscopy. Furthermore, the electrochemical activity of the developed sensor was tested by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. The modified electrode showed outstanding electro-catalytic activity towards the detection of Thiourea in phosphate buffer saline at a high pH level of 12.0. The proposed sensor showed a linear range of linearity in a concentration ranging from 5.0 × 10-6 - 900 × 10-6 molL-1 and a detection limit of 2.0 × 10-6 molL-1. Moreover, the selectivity of the developed electrochemical sensor was investigated for the detection of Thiourea in the presence of organic compounds and a group of anions. Furthermore, the proposed strategy demonstrated an excellent recovery value in the spiked farmland water and fruit juice sample.
Collapse
Affiliation(s)
- M.A. Khaleque
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.R. Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.S. Bacchu
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.R.A. Mamun
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.I. Hossain
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.S. Hossain
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohamed Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen, Guangdong, 518055, China
| | - M.Z.H. Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
2
|
Harini H, Nagaswarupa H, Tilahun Bekele E, Murthy HA, Ravikumar C. Novel synthesis of Cu2ZnAl2O4 nanostructures for photocatalytic and electrochemical sensor applications. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
3
|
Raeisi-Kheirabadi N, Nezamzadeh-Ejhieh A, Aghaei H. Cyclic and Linear Sweep Voltammetric Studies of a Modified Carbon Paste Electrode with Nickel Oxide Nanoparticles toward Tamoxifen: Effects of Surface Modification on Electrode Response Kinetics. ACS OMEGA 2022; 7:31413-31423. [PMID: 36092618 PMCID: PMC9454271 DOI: 10.1021/acsomega.2c03441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
Due to the serious adverse futures of some anticancer drugs, the determination of trace amounts of these drugs by simple analytical techniques is of great interest. In this regard, knowing about the mechanism of the analyte with the sensing material plays an important role. Nickel oxide nanoparticles (NiO NPs) modified by a carbon paste electrode (NiO-CPE) showed an irreversible cyclic voltammetric (CV) behavior in the NaOH (pH 13) supporting electrolyte based on the peak separation of 311 mV. Its peak current was decreased by adding tamoxifen (TAM), confirming that TAM molecules can consume NiO before participating in the electrode reaction. For this goal, TAM can be oxidized or reduced, and the corresponding mechanisms are schematically illustrated in the text. This study focused on the kinetic aspects of the process. Based on the CV results, a surface coverage (Γ) value of 2.72 × 10-5 mol NiO per cm2 was obtained with charge transfer coefficients αa and αc of 0.317 and 0.563, respectively. αa and αc values were changed to 0.08 and 0.72 in the presence of TAM. Further, the rate constant (k s) value was 0.021 ± 0.01 s-1 in the presence of TAM. In linear sweep voltammetry (LSV), an α value of about 0.636 ± 0.023 and an exchange rate constant (k o) value of about 0.097 ± 0.031 s-1 were obtained in the absence of TAM, which changed to 0.62 ± 0.081 and 0.089 ± 0.021 s-1 in the presence of TAM, respectively. Despite more published papers, when the TAM analyte was added to the NaOH supporting electrolyte, both anodic and cathodic peak currents of the modified NiO-CPE decreased. We suggested some reasons for this decreased peak current, and four mechanisms were illustrated for the electrode response in the presence of TAM.
Collapse
|
4
|
Aloe barbadensis Mill leaf gel assisted combustion synthesized ZnO:Ni3+: Electrochemical sensor for Ascorbic Acid detection and Photocatalysis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Synthesis of ZnO nanoparticles mediated by natural products of Acanthus sennii leaf extract for electrochemical sensing and photocatalytic applications: a comparative study of volume ratios. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|