1
|
Fdez-Sanromán A, Bernárdez-Rodas N, Rosales E, Pazos M, González-Romero E, Sanromán MÁ. Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens. BIOSENSORS 2025; 15:189. [PMID: 40136986 PMCID: PMC11940157 DOI: 10.3390/bios15030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
This review explores the development, technological foundations, and applications of biosensor technologies across various fields, such as medicine for disease diagnosis and monitoring, and the food industry. However, the primary focus is on their use in detecting contaminants and pathogens, as well as in environmental monitoring for water quality assessment. The review classifies different types of biosensors based on their bioreceptor and transducer, highlighting how they are specifically designed for the detection of emerging contaminants (ECs) and pathogens in water. Key innovations in this technology are critically examined, including advanced techniques such as systematic evolution of ligands by exponential enrichment (SELEX), molecularly imprinted polymers (MIPs), and self-assembled monolayers (SAMs), which enable the fabrication of sensors with improved sensitivity and selectivity. Additionally, the integration of microfluidic systems into biosensors is analyzed, demonstrating significant enhancements in performance and detection speed. Through these advancements, this work emphasizes the fundamental role of biosensors as key tools for safeguarding public health and preserving environmental integrity.
Collapse
Affiliation(s)
- Antía Fdez-Sanromán
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Nuria Bernárdez-Rodas
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Marta Pazos
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Elisa González-Romero
- Department of Analytical and Food Chemistry, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain;
| | - Maria Ángeles Sanromán
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| |
Collapse
|
2
|
Bashir K, Shikha S, Rattu G, Jan K, Krishna PM, Pattanayek SK. Pesticide residues and their detection techniques in foods using sensors- a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:221-239. [PMID: 39868385 PMCID: PMC11757846 DOI: 10.1007/s13197-024-06116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025]
Abstract
The use of pesticides in agricultural produce is continuously increasing and it raises the question of whether the food is safe or not. Only 0.1% of the sprayed pesticide reaches its target and the rest acts as a contaminant in soil and the environment, thus contaminating the future foods as well. The pesticide residue management is gaining attention as pesticide poisoning account for more than 3.5% of total deaths. The use of pesticides needs to be checked and applied in a controlled manner. Easy and rapid methods for the quantification of pesticides in foods need to be developed. In the present review, details about pesticides have been described in the first part. Secondly, the techniques and recent developments for the detection of pesticides have been summarized and finally, the emerging challenges and future perspectives for pesticide handling has been discussed with special emphasis on the use of Nano-sensors for pesticide detection. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06116-8.
Collapse
Affiliation(s)
- Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, 110062 India
| | - Shalini Shikha
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, 110062 India
| | - Gurdeep Rattu
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka 560064 India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi, 110062 India
| | - P. Murali Krishna
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana 131028 India
| | - Sudip K. Pattanayek
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, 110062 India
| |
Collapse
|
3
|
Javed K, Abbas N, Bilal M, Alshihri AA, Rab Nawaz HZ, Ramadan MF, Naqvi SAR. Fabrication of a ZnFe 2O 4@Co/Ni-MOF nanocomposite and photocatalytic degradation study of azo dyes. RSC Adv 2024; 14:30957-30970. [PMID: 39346520 PMCID: PMC11429226 DOI: 10.1039/d4ra05283h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
This study addresses the critical issue of removing organic pollutants from water, focusing on the photocatalytic degradation of Congo red (CR) dye using a novel ZnFe2O4@Co-Ni metal-organic framework (MOF) nanocomposite (ZFCNM). The primary aim was to develop a photocatalyst with enhanced efficiency by combining the properties of ZnFe2O4 with Co/Ni-MOF, leading to a low band gap (2.89 eV) and a high surface area (723 m2 g-1). The ZFCNM nanocomposite, synthesized via a hydrothermal method, was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), confirming the formation of face-centered cubic ferrite and hexagonal MOF structures. Fourier-transform infrared spectroscopy (FTIR) verified the presence of carboxyl (-COOH) groups and Fe-O bonds in the composite. Photodegradation efficiency was evaluated under varying conditions, including reaction time, pH, catalyst dosage, contaminant concentration, and light intensity. The ZFCNM photocatalyst, with an equal mass ratio of Co/Ni-MOF and ZnFe2O4, achieved a 98% removal efficiency of CR (75 min reaction time, pH 5, at 25 °C, and visible-light intensity of a 50 W LED lamp) significantly outperforming Co/Ni-MOF (24%) and ZnFe2O4 (36%) alone. The estimated quantum yield (QY) was 3.00 × 10-6 molecules per photon, and kinetic studies revealed a first-order reaction pathway with an R 2 value of 0.9813. These results highlight the potential of ZFCNM as an effective photocatalyst for water purification applications.
Collapse
Affiliation(s)
- Khalid Javed
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Punjab Pakistan
| | - Naseem Abbas
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Punjab Pakistan
| | - Muhammad Bilal
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Punjab Pakistan
| | - Abdulaziz A Alshihri
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Hafiza Zahra Rab Nawaz
- Department of Chemistry, Government College University Faisalabad Faisalabad-38040 Punjab Pakistan +92-313-9904742
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University Makkah Saudi Arabia
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad Faisalabad-38040 Punjab Pakistan +92-313-9904742
| |
Collapse
|
4
|
Blueprint for Impedance-based Electrochemical Biosensors as Bioengineered Tools in the Field of Nano-Diagnostics. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Recent Advances in Nanomaterial-Based Biosensors for Pesticide Detection in Foods. BIOSENSORS 2022; 12:bios12080572. [PMID: 36004968 PMCID: PMC9405907 DOI: 10.3390/bios12080572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Biosensors are a simple, low-cost, and reliable way to detect pesticides in food matrices to ensure consumer food safety. This systematic review lists which nanomaterials, biorecognition materials, transduction methods, pesticides, and foods have recently been studied with biosensors associated with analytical performance. A systematic search was performed in the Scopus (n = 388), Web of Science (n = 790), and Science Direct (n = 181) databases over the period 2016–2021. After checking the eligibility criteria, 57 articles were considered in this study. The most common use of nanomaterials (NMs) in these selected studies is noble metals in isolation, such as gold and silver, with 8.47% and 6.68%, respectively, followed by carbon-based NMs, with 20.34%, and nanohybrids, with 47.45%, which combine two or more NMs, uniting unique properties of each material involved, especially the noble metals. Regarding the types of transducers, the most used were electrochemical, fluorescent, and colorimetric, representing 71.18%, 13.55%, and 8.47%, respectively. The sensitivity of the biosensor is directly connected to the choice of NM and transducer. All biosensors developed in the selected investigations had a limit of detection (LODs) lower than the Codex Alimentarius maximum residue limit and were efficient in detecting pesticides in food. The pesticides malathion, chlorpyrifos, and paraoxon have received the greatest attention for their effects on various food matrices, primarily fruits, vegetables, and their derivatives. Finally, we discuss studies that used biosensor detection systems devices and those that could detect multi-residues in the field as a low-cost and rapid technique, particularly in areas with limited resources.
Collapse
|
6
|
Jain U, Saxena K, Hooda V, Balayan S, Singh AP, Tikadar M, Chauhan N. Emerging vistas on pesticides detection based on electrochemical biosensors - An update. Food Chem 2022; 371:131126. [PMID: 34583176 DOI: 10.1016/j.foodchem.2021.131126] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Organophosphates and carbamates pesticides are widely used to increase crop production globally causing a threat to human health and the environment. A variety of pesticides are applied during different stages of vegetable production. Therefore, monitoring the presence of pesticide residues in food and soil has great relevance to sensitive pesticide detection through distinct determination methods that are urgently required. Conventional techniques for the detection of pesticides have several limitations that can be overcome by the development of highly sensitive, fast, reliable and easy-to-use electrochemical biosensors. Herein, we describe the types of biosensors with the main focus on electrochemical biosensors fabricated for the detection of OPPs and carbamates pesticides. An overview of conventional techniques employed for pesticide detection is also discussed. This review aims to provide a glance of recently developed biosensors for some common pesticides like chlorpyrifos, malathion, parathion, paraoxon, and carbaryl which are present in food and environment samples.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Vinita Hooda
- Department of Botany, M. D. University, Rohtak 124001, Haryana, India
| | - Sapna Balayan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Amar Pal Singh
- Amity Institute of Forensic Sciences (AIFS), Amity University Uttar Pradesh (AUUP), Noida 201313, India; Forensic Science Laboratory, Govt. of NCT of Delhi, Sector-14, Rohini, Delhi, India
| | - Mayukh Tikadar
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
7
|
Mohammadnia M, Heydari R, Sohrabi MR, Motiee F. Determination of diazinon in water and food samples using magnetic solid‐phase extraction coupled with liquid chromatography. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Maryam Mohammadnia
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| | - Rouhollah Heydari
- Research Center for Environmental Determinants of Health Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mahmoud Reza Sohrabi
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| | - Fereshteh Motiee
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| |
Collapse
|
8
|
Moradi N, Shamsipur M, Taherpour AA, Rahimdad N, Pashabadi A. Fabrication of Template-Less Self-Propelled Micromotors Based on A Metal-Sandwiched Polytryptophan Body: An Experimental and DFT Study. Chempluschem 2020; 85:1129-1136. [PMID: 32485096 DOI: 10.1002/cplu.202000242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The diverse capabilities of self-propelled micro/nanomotors open up significant opportunities for various environmental and biomedical applications. Here, a synchronized two-lobed bubble exhaust drives micromotor comprising a metal (cobalt and gold) sandwiched polytryptophan body (Au/poly-Trp/Co) in a non-curved direction. The autonomous motion is achieved through the decomposition of chemical fuel to result in a kayak-like system. The ejected oxygen bubbles from the interfacial cobalt/polytryptophan layer, as well as the inert nature of the metal segments (Au-Co), were considered for some computational studies of the electronic properties of the composite and physical phenomena at the kayak/electrolyte interfaces, and confirmed the role of Co-Trp in the fuel decomposition. It is believed that the autonomous motion is the combined result of bubble recoil force, self-electrophoresis, and perturbation in the interfacial hydrogen-bond network of the poly-Trp body and water molecules. The velocity of the micromotor in the range 23±4 to 157±17 μm s-1 at different concentrations of H2 O2 from 1 % to 10 %. Depending on the method of fragmentation, it is possible to have both single and multiple motorized kayaks with lengths of 1.5 and 6 μm, respectively, that can be tailored for environmental applications.
Collapse
Affiliation(s)
- Nozar Moradi
- Department of Chemistry, Razi University Tagh-e-Bostan, University St., Kermanshah, Iran, 6714414971, Iran
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University Tagh-e-Bostan, University St., Kermanshah, Iran, 6714414971, Iran
| | - Avat Arman Taherpour
- Department of Chemistry, Razi University Tagh-e-Bostan, University St., Kermanshah, Iran, 6714414971, Iran
| | - Nastaran Rahimdad
- Department of Chemistry, Bu-Ali Sina University, Shahid M. A. Roshan Street, Hamedan, 6516738695, Iran
| | - Afshin Pashabadi
- Department of Chemistry, Razi University Tagh-e-Bostan, University St., Kermanshah, Iran, 6714414971, Iran
| |
Collapse
|