1
|
Marques DSC, da Silva Lima L, de Oliveira Moraes Miranda JF, Dos Anjos Santos CÁ, da Cruz Filho IJ, de Lima MDCA. Exploring the therapeutic potential of acridines: Synthesis, structure, and biological applications. Bioorg Chem 2025; 155:108096. [PMID: 39756205 DOI: 10.1016/j.bioorg.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
The objective of this review was to explore the trends and chemical characteristics of acridines and their derivatives, analyze their contribution to the scientific literature and international cooperation, identify the most influential authors and articles, and provide an overview of the knowledge produced in elucidating their mechanisms of action. To this end, a bibliometric analysis was performed using RStudio software, along with a systematic review focusing on articles indexed in the "Web of Science" and "Scopus" databases. The keywords used were "acridine$", "Synthesi$", "Structure$", and "Biologic* Application$" for the period from 2020 to 2024. Relevant articles were carefully selected from these databases, and a bibliometric analysis was carried out to comprehensively discuss the most relevant biological activities associated with acridines. The results showed that, during the analyzed period, China and India led in the number of publications, followed by Brazil in third place. However, a decline in the number of publications was observed in the last two years of the period. Keyword analysis revealed that antitumor activity remains the most extensively studied aspect of acridines and their derivatives.
Collapse
Affiliation(s)
- Diego Santa Clara Marques
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Lisandra da Silva Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Josué Filipe de Oliveira Moraes Miranda
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Carolina Ávila Dos Anjos Santos
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil.
| | - Maria do Carmo Alves de Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| |
Collapse
|
2
|
Galenko EE, Novikov MS, Bunev AS, Khlebnikov AF. Acridine-Isoxazole and Acridine-Azirine Hybrids: Synthesis, Photochemical Transformations in the UV/Visible Radiation Boundary Region, and Anticancer Activity. Molecules 2024; 29:1538. [PMID: 38611817 PMCID: PMC11013717 DOI: 10.3390/molecules29071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Easy-to-handle N-hydroxyacridinecarbimidoyl chloride hydrochlorides were synthesized as convenient nitrile oxide precursors in the preparation of 3-(acridin-9/2-yl)isoxazole derivatives via 1,3-dipolar cycloaddition with terminal alkynes, 1,1-dichloroethene, and acrylonitrile. Azirines with an acridin-9/2-yl substituent attached directly or via the 1,2,3-triazole linker to the azirine C2 were also synthesized. The three-membered rings of the acridine-azirine hybrids were found to be resistant to irradiation in the UV/visible boundary region, despite their long-wave absorption at 320-420 nm, indicating that the acridine moiety cannot be used as an antenna to transfer light energy to generate nitrile ylides from azirines for photoclick cycloaddition. The acridine-isoxazole hybrids linked at the C9-C3 or C2-C3 atoms under blue light irradiation underwent the addition of such hydrogen donor solvents, such as, toluene, o-xylene, mesitylene, 4-chlorotoluene, THF, 1,4-dioxane, or methyl tert-butyl ether (MTBE), to the acridine system to give the corresponding 9-substituted acridanes in good yields. The synthesized acridine-azirine, acridine-isoxazole, and acridane-isoxazole hybrids exhibited cytotoxicity toward both all tested cancer cell lines (HCT 116, MCF7, and A704) and normal cells (WI-26 VA4).
Collapse
Affiliation(s)
- Ekaterina E. Galenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Mikhail S. Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Alexander S. Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti 445020, Russia;
| | - Alexander F. Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| |
Collapse
|
3
|
Neiber RR, Samak NA, Xing J, Elmongy EI, Galhoum AA, El Sayed IET, Guibal E, Xin J, Lu X. Synthesis and molecular docking study of α-aminophosphonates as potential multi-targeting antibacterial agents. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133203. [PMID: 38103294 DOI: 10.1016/j.jhazmat.2023.133203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 μg/mL for E. coli, P. aeruginosa, and 6.25 μg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 μg/mL for E. coli, P. aeruginosa, and 25 μg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.
Collapse
Affiliation(s)
- Rana R Neiber
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Nadia A Samak
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Aquatic microbiology department, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Jianmin Xing
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| | | | - Eric Guibal
- Institut Mines Telecom-Mines Alès, C2MA, 6 avenue de Clavières, F-30319 Alès cedex, France
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Department of Chemistry, University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
4
|
Abdelaziz E, El-Deeb NM, Zayed MF, Hasanein AM, El Sayed IET, Elmongy EI, Kamoun EA. Synthesis and in-vitro anti-proliferative with antimicrobial activity of new coumarin containing heterocycles hybrids. Sci Rep 2023; 13:22791. [PMID: 38123695 PMCID: PMC10733349 DOI: 10.1038/s41598-023-50170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
A series of new coumarin-N-heterocyclic hybrids, coumarin-quinolines 7a-e, coumarin-acridines 10b,c and coumarin-neocryptolepines 13b,c were synthesized and evaluated for their anticancer and antimicrobial activities. The structures of all synthesized hybrids were confirmed by FT-IR, 1H-NMR, 13C-NMR, and MS spectrometry. The anti-proliferative activity of hybrids 7a-e, 10c and 13c were bio-evaluated using MTT-assay against colon (CaCo-2), lung (A549), breast (MDA-MB-231), and hepatocellular carcinoma (HepG-2) human cancer cell lines using doxorubicin as a reference drug. The results demonstrated that, all hybrids displayed moderate to good anti-proliferative activity against the cell lines. The most active hybrids were 7a-d and 10c against CaCo-2 cancer cell line with IC50: 57.1, 52.78, 57.29, 51.95 and 56.74 µM, and selectivity index 1.38, 1.76, 2.6, 1.96 and 0.77; respectively. While, 7a,d were potent against A549 cancer cell line with IC50: 51.72, 54.8 µM and selectivity index 1.5, 0.67; respectively. Moreover, 7c showed the most potency against MDA-MB-231 cancer cell line with IC50: 50.96 µM and selectivity index 2.20. Interestingly, docking results revealed that binding energy of the current compounds showed marked affinity values ranging from -6.54 to -5.56 kcal with interactions with the reported key amino acid SER 79. Furthermore, the antimicrobial activity of the synthesized hybrids 7a-e, 10b,c, 13b and 13c were evaluated against Gram-positive and Gram-negative bacterial and fungal strains. The hybrids 10b, 13b, 10c, and 13c exhibited broad-spectrum antibacterial activity against E.coli, S. mutans, and S. aureus with MIC from 3.2 to 66 µM, this hybrids also displayed antifungal activity against C. albicans with MIC values ranging from 0.0011 to 29.5 µM. In-silico investigation of the pharmacokinetic properties indicated that tested hybrids had high GI absorption, low Blood Brain Barrier (BBB) permeability in addition to cell membrane penetrability.
Collapse
Affiliation(s)
- Eman Abdelaziz
- Department of Chemistry, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI) City of Scientific Research and Technological Applications (SRTA-City) Alexandria, New Borg El-Arab City, 21934, Egypt
| | - Mervat F Zayed
- Department of Chemistry, Faculty of Science, Menoufia University, Menoufia, Egypt
| | | | | | - Elshaymaa I Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain Helwan, P.O. Box 11795, Cairo, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City, Alexandria, New Borg El-Arab City, 21934, Egypt.
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo, Egypt.
| |
Collapse
|
5
|
Sheir SK, Elmongy EI, Mohamad AH, Osman GY, Bendary SE, Ahmed AAS, Binsuwaidan R, El-Sayed IET. Molluscicidal and Larvicidal Potency of N-Heterocylic Analogs against Biomophalaria alexandrina Snails and Schistosoma mansoni Larval Stages. Pharmaceutics 2023; 15:pharmaceutics15041200. [PMID: 37111685 PMCID: PMC10142358 DOI: 10.3390/pharmaceutics15041200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
This work describes the synthesis of quinoline-based N--heterocyclic arenes and their biological evaluation as molluscicides against adult Biomophalaria alexandrina snails as well as larvicides against Schistosoma mansoni larvae (miracidia and cercariae). Molecular docking studies were demonstrated to investigate their affinity for cysteine protease protein as an interesting target for antiparasitics. Compound AEAN showed the best docking results followed by APAN in comparison to the co-crystallized ligand D1R reflected by their binding affinities and RMSD values. The egg production, hatchability of B. alexandrina snails and ultrastructural topography of S. mansoni cercariae using SEM were assessed. Biological evaluations (hatchability and egg-laying capacity) revealed that the quinoline hydrochloride salt CAAQ was the most effective compound against adult B. alexandrina snails, whereas the indolo-quinoline derivative APAN had the most efficiency against miracidia, and the acridinyl derivative AEAA was the most effective against cercariae and caused 100% mortality. CAAQ and AEAA were found to modulate the biological responses of B. alexandrina snails with/without S. mansoni infection and larval stages that will affect S. mansoni infection. AEAA caused deleterious morphological effects on cercariae. CAAQ caused inhibition in the number of eggs/snail/week and reduced reproductive rate to 43.8% in all the experimental groups. CAAQ and AEAA can be recommended as an effective molluscicide of plant origin for the control program of schistosomiasis.
Collapse
Affiliation(s)
- Sherin K Sheir
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Azza H Mohamad
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Shimaa E Bendary
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Abdullah A S Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Egypt
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
6
|
Nofal AE, Elmongy EI, Hassan EA, Tousson E, Ahmed AAS, El Sayed IET, Binsuwaidan R, Sakr M. Impact of Synthesized Indoloquinoline Analog to Isolates from Cryptolepis sanguinolenta on Tumor Growth Inhibition and Hepatotoxicity in Ehrlich Solid Tumor-Bearing Female Mice. Cells 2023; 12:cells12071024. [PMID: 37048097 PMCID: PMC10093181 DOI: 10.3390/cells12071024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The study evaluated the antitumor efficacy of APAN, “synthesized indoloquinoline analog derived from the parent neocryptolepine isolated from the roots of Cryptolepis sanguinolenta”, versus the chemotherapeutic drug etoposide (ETO) in Ehrlich solid tumor (EST)-bearing female mice as well as its protective effect against etoposide-triggered hepatic disorders. APAN showed an ameliorative activity against Ehrlich solid tumor and hepatic toxicity, and the greatest improvement was found in the combined treatment of APAN with ETO. The results indicated that EST altered the levels of tumor markers (AFP, CEA, and anti-dsDNA) and liver biomarker function (ALT, AST, ALP, ALB, and T. protein). Furthermore, EST elevated CD68 and anti-survivin proteins immuno-expressions in the solid tumor and liver tissue. Molecular docking studies were demonstrated to investigate their affinity for both TNF-α and topoisomerase II as target proteins, as etoposide is based on the inhibition of topoisomerase II, and TNF-α is quite highly expressed in the solid tumor and liver tissues of EST-bearing animals, which prompted the authors’ interest to explore APAN affinity to its binding site. Treatment of mice bearing EST with APAN and ETO nearly regularized serum levels of the altered parameters and ameliorated the impact of EST on the tissue structure of the liver better than that by treatment with each of them separately.
Collapse
Affiliation(s)
- Amany E. Nofal
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Elshaymaa I. Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
- Correspondence:
| | - Engy Abo Hassan
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (E.A.H.); (A.A.S.A.); (I.E.T.E.S.); (M.S.)
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31511, Egypt;
| | - Abdullah A. S. Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (E.A.H.); (A.A.S.A.); (I.E.T.E.S.); (M.S.)
| | - Ibrahim El Tantawy El Sayed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (E.A.H.); (A.A.S.A.); (I.E.T.E.S.); (M.S.)
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Manar Sakr
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (E.A.H.); (A.A.S.A.); (I.E.T.E.S.); (M.S.)
| |
Collapse
|
7
|
Design and cytotoxic evaluation via apoptotic and antiproliferative activity for novel 11(4-aminophenylamino)neocryptolepine on hepatocellular and colorectal cancer cells. Apoptosis 2023; 28:653-668. [PMID: 36719468 DOI: 10.1007/s10495-023-01810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
The current study evaluated the cytotoxic activity of 11(4-Aminophenylamino)neocryptolepine (APAN), a novel derivative of neocryptolepine, on hepatocellular (HepG2) and colon (HCT-116) carcinoma cell lines as well as, the possible molecular mechanism through which it exerts its cytotoxic activity. The APAN was synthesized and characterized based on their spectral analyses. Scanning for anticancer target of APAN by Swiss software indicated that APAN had highest affinity for protein tyrosine kinase 6 enzyme. Furthermore, Super pred software indicated that APAN can be indicated in hepatic and colorectal cells with 92%. Molecular docking studies indicated that the binding affinity scores of APAN for protein PDB code: 6CZ4 of tyrosine kinase 6 recorded of - 6.6084 and RMSD value of 0.8891°A, while that for protein PDB: 7JL7 of caspase 3 was - 6.1712 and RMSD of 0.8490°A. Treatment of HepG2 and HCT-116 cells with APAN induced cytotoxicity with IC50 of 2.6 and 1.82 μg/mL respectively. In addition, it induced injury and serious morphological changes in cells including, disappearance of microvilli, membrane blebbing, cytoplasmic condensation, and shrunken nucleus with more condensed chromatin. Moreover, APAN significantly increased protein expression of annexin V (apoptotic marker). Furthermore, APAN significantly increased protein expression of caspase 3 and P53. However, it significantly reduced secretion of VEGF protein into the medium and decreased protein expression of PCNA and Ki67 in HepG2 and HCT-116 cells. This study indicated that APAN had cytotoxic activity against HepG2 and HCT-116 cells via increasing the expression of apoptotic proteins and reducing the expression of proliferative proteins.
Collapse
|
8
|
CFNC, a neocryptolepine derivative, inhibited the growth of gastric cancer AGS cells by inhibiting PI3K/AKT signaling pathway. Eur J Pharmacol 2022; 938:175408. [PMID: 36442620 DOI: 10.1016/j.ejphar.2022.175408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Gastric cancer is highly heterogeneous and there is still a lack of efficient, low-toxicity small molecule compounds for the treatment of gastric cancer. Natural products are important sources for the development of antitumor compounds. Therefore, it is promising strategy to find the lead compound of anti-gastric cancer agents by structural modification of natural products. The aim of this study was to synthesize a novel neocryptolepine derivative CFNC and explore its potential anti-gastric cancer effect and molecular mechanism. The MTT assay showed that the IC50 of CFNC on AGS cells reached 148 nM. CFNC arrested AGS cells in the G2/M phase of the cell cycle. Furthermore, CFNC inhibited cell proliferation and migration, leading to the loss of membrane potential by causing mitochondrial dysfunction, which induced the apoptosis of AGS cells. Western blot assay suggested that CFNC could inhibit the expression of important proteins in the PI3K/AKT/mTOR signaling pathway. These results showed that CFNC exhibited strong cytotoxic activity in gastric cancer cell lines by regulating the PI3K/AKT/mTOR signaling pathway. Taken together, CFNC could be a promising lead compound for the clinical treatment of gastric cancer.
Collapse
|
9
|
Synthesis, Nanoformulations, and In Vitro Anticancer Activity of N-Substituted Side Chain Neocryptolepine Scaffolds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031024. [PMID: 35164289 PMCID: PMC8839462 DOI: 10.3390/molecules27031024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
The naturally occurring neocryptolepine (5-Methylindolo [2,3-b]quinoline) and its analogs exhibited prominent anticancer and antimalarial activity. However, the main problem of this class of compounds is their poor aqueous solubility, hampering their bioavailability and preventing their clinical development. To overcome the problem of insolubility and to improve the physicochemical and the pharmacological properties of 5-Methylindolo [2,3-b]quinoline compounds, this work was designed to encapsulate such efficient medical compounds into mesoporous silica oxide nanoemulsion (SiO2NPs). Thus, in this study, SiO2NPs was loaded with three different concentrations (0.2 g, 0.3, and 0.6 g) of 7b (denoted as NPA). The findings illustrated that the nanoparticles were formed with a spherical shape and exhibited small size (less than 500 nm) using a high concentration of the synthesized chemical compound (NPA, 0.6 g) and good stabilization against agglomeration (more than -30 mv). In addition, NPA-loaded SiO2NPs had no phase separation as observed by our naked eyes even after 30 days. The findings also revealed that the fabricated SiO2NPs could sustain the release of NPA at two different pH levels, 4.5 and 7.4. Additionally, the cell viability of the produced nanoemulsion system loaded with different concentrations of NPA was greater than SiO2NPs without loading, affirming that NPA had a positive impact on increasing the safety and cell viability of the whole nanoemulsion. Based on these obtained promising data, it can be considered that the prepared NPA-loaded SiO2NPs seem to have the potential for use as an effective anticancer drug nanosystem.
Collapse
|
10
|
New thiophene-derived α-aminophosphonic acids: Synthesis under microwave irradiations, antioxidant and antifungal activities, DFT investigations and SARS-CoV-2 main protease inhibition. J Mol Struct 2022; 1250:131853. [DOI: 10.1016/j.molstruc.2021.131853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022]
|
11
|
Vinoth N, Lalitha A. Synthesis of new
1
H
‐spiro[acridine‐9,3′‐indoline]‐1,2′(
2
H
,
10
H
)‐dione derivatives using aqueous ethanol as a reaction medium. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Saleh NM, Moemen YS, Mohamed SH, Fathy G, Ahmed AAS, Al-Ghamdi AA, Ullah S, El Sayed IET. Experimental and Molecular Docking Studies of Cyclic Diphenyl Phosphonates as DNA Gyrase Inhibitors for Fluoroquinolone-Resistant Pathogens. Antibiotics (Basel) 2022; 11:53. [PMID: 35052930 PMCID: PMC8772930 DOI: 10.3390/antibiotics11010053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
DNA gyrase and topoisomerase IV are proven to be validated targets in the design of novel antibacterial drugs. In this study, we report the antibacterial evaluation and molecular docking studies of previously synthesized two series of cyclic diphenylphosphonates (1a-e and 2a-e) as DNA gyrase inhibitors. The synthesized compounds were screened for their activity (antibacterial and DNA gyrase inhibition) against ciprofloxacin-resistant E.coli and Klebsiella pneumoniae clinical isolates having mutations (deletion and substitution) in QRDR region of DNA gyrase. The target compound (2a) that exhibited the most potent activity against ciprofloxacin Gram-negative clinical isolates was selected to screen its inhibitory activity against DNA gyrase displayed IC50 of 12.03 µM. In addition, a docking study was performed with inhibitor (2a), to illustrate its binding mode in the active site of DNA gyrase and the results were compatible with the observed inhibitory potency. Furthermore, the docking study revealed that the binding of inhibitor (2a) to DNA gyrase is mediated and modulated by divalent Mg2+ at good binding energy (-9.08 Kcal/mol). Moreover, structure-activity relationships (SARs) demonstrated that the combination of hydrazinyl moiety in conjunction with the cyclic diphenylphosphonate based scaffold resulted in an optimized molecule that inhibited the bacterial DNA gyrase by its detectable effect in vitro on gyrase-catalyzed DNA supercoiling activity.
Collapse
Affiliation(s)
- Neveen M. Saleh
- Department of Microbiology, National Organization for Drug Control and Research, Giza 12553, Egypt;
| | - Yasmine S. Moemen
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Sara H. Mohamed
- Department of Microbiology, National Organization for Drug Control and Research, Giza 12553, Egypt;
| | - Ghady Fathy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (G.F.); (A.A.S.A.)
| | - Abdullah A. S. Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (G.F.); (A.A.S.A.)
| | - Ahmed A. Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sami Ullah
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ibrahim El-Tantawy El Sayed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (G.F.); (A.A.S.A.)
| |
Collapse
|
13
|
Facile Synthesis of Iron-Based MOFs MIL-100(Fe) as Heterogeneous Catalyst in Kabachnick Reaction. Catalysts 2021. [DOI: 10.3390/catal11121451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An effective technique was proposed for the synthesis of novel α-aminophosphonates: a three-component one-pot condensation reaction of aniline, aromatic aldehydes, and triphenyl phosphite in the presence of (MIL-100(Fe)) as a heterogeneous catalyst. Initially, MIL-100(Fe) was synthesized using H3BTC and ferric nitrate at low temperature and atmospheric pressure. Further, MIL-100(Fe) was characterized using various techniques such as XRD, BET surface area, scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR), and thermogravimetric analysis (TGA). Herein, MIL-100(Fe) showed exceptional catalytic performance for the synthesis of α-aminophosphonate and its derivatives compared with conventional solid catalysts, and even homogeneous catalysts. The study demonstrated that MIL-100(Fe) is an ecofriendly and easily recyclable heterogeneous catalyst in Kabachnick reactions for α-aminophosphonate synthesis, with high yield (98%) and turnover frequency (TOF ~ 3.60 min−1) at room temperature and a short reaction time (30 min).
Collapse
|
14
|
Altwaijry N, El-Ghlban S, El Sayed IET, El-Bahnsawye M, Bayomi AI, Samaka RM, Shaban E, Elmongy EI, El-Masry TA, Ahmed HMA, Attallah NGM. In Vitro and In Vivo Antitumor Activity of Indolo[2,3- b] Quinolines, Natural Product Analogs from Neocryptolepine Alkaloid. Molecules 2021; 26:754. [PMID: 33535575 PMCID: PMC7867085 DOI: 10.3390/molecules26030754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/27/2022] Open
Abstract
Neocryptolepine (5-methyl-5H-indolo[2,3-b] quinoline) analogs were synthesized and evaluated in vitro and in vivo for their effect versus Ehrlich ascites carcinoma (EAC). The analogs showed stronger cytotoxic activity against EAC cells than the reference drug. The in vivo evaluation of the target compounds against EAC-induced solid tumor in the female albino Swiss mice revealed a remarkable decrease in the tumor volume (TV) and hepatic lipid peroxidation. A noticeable increase of both superoxide dismutase (SOD) and catalase (CAT) levels was reported (p < 0.001), which set-forth proof of their antioxidant effect. In addition, the in vitro antioxidant activity of the neocryptolepine analogs was screened out using the DPPH method and showed promising activities activity. The histopathological investigations affirmed that the tested analogs have a remarkable curative effect on solid tumors with minimal side-effect on the liver. The study also includes illustrated mechanism of the antitumor activity at the cell level by flow cytometry. The cell cycle analysis showed that the neocryptolepine analogs extensively increase the aggregation of tumor cells in three phases of the cell cycle (G0/G1, S and G2/M) with the emergence of a hypo-diploid DNA content peak (sub-G1) in the cell cycle experiments, which is a clear-cut for the apoptotic cell population. Furthermore, the immunological study manifested a significant elevation in splenic lymphocyte count (p < 0.001) with the elevation of the responsiveness of lymphocytes to phytohemagglutinin (PHA). These results indicate that these naturally-based neocryptolepine alkaloids exhibit marked antitumor activity in vivo and represent an important lead in the development of natural-based anticancer drugs.
Collapse
Affiliation(s)
- Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia; (N.A.); (E.I.E.); (T.A.E.-M.); (N.G.M.A.)
| | - Samah El-Ghlban
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El Koom P.O. Box 32511, Egypt; (S.E.-G.); (M.E.-B.)
| | - Ibrahim E.-T. El Sayed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El Koom P.O. Box 32511, Egypt; (S.E.-G.); (M.E.-B.)
| | - Mohamed El-Bahnsawye
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El Koom P.O. Box 32511, Egypt; (S.E.-G.); (M.E.-B.)
| | - Asmaa I. Bayomi
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El Koom P.O. Box 32511, Egypt;
| | - Rehab M. Samaka
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Koom P.O. Box 32511, Egypt;
| | - Elkhabiry Shaban
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza P.O. Box 12622, Egypt;
| | - Elshaymaa I. Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia; (N.A.); (E.I.E.); (T.A.E.-M.); (N.G.M.A.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo P.O. Box 11795, Egypt
| | - Thanaa A. El-Masry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia; (N.A.); (E.I.E.); (T.A.E.-M.); (N.G.M.A.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta P.O. Box 31527, Egypt
| | - Hytham M. A. Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Shebin El Koom P.O. Box 32511, Menoufia, Egypt;
| | - Nashwah G. M. Attallah
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia; (N.A.); (E.I.E.); (T.A.E.-M.); (N.G.M.A.)
- National Organization of Drug Control and Research (NODCAR), Giza P.O. Box 29 Pyramids, Egypt
| |
Collapse
|
15
|
Zaout S, Chafaa S, Hellal A, Boukhemis O, Khattabi L, Merazig H, Chafai N, Bensouici C, Bendjeddou L. Hydroxyphenylamine phosphonate derivatives: Synthesis, X-ray crystallographic analysis, and evaluation of theirs anti-Alzheimer effects and antioxidant activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Dimukhametov MN, Mironov VF, Islamov DR, Litvinov IA, Gnezdilov OI, Danilova YV. Reaction of sodium N-benzylideneglycinate with dialkyl chlorophosphites in the presence of water. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Elsherbiny DA, Abdelgawad AM, El-Naggar ME, El-Sherbiny RA, El-Rafie MH, El-Sayed IET. Synthesis, antimicrobial activity, and sustainable release of novel α-aminophosphonate derivatives loaded carrageenan cryogel. Int J Biol Macromol 2020; 163:96-107. [DOI: 10.1016/j.ijbiomac.2020.06.251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/06/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023]
|