Murugesan A, Li H, Shoaib M. Recent Advances in Functionalized Carbon Quantum Dots Integrated with Metal-Organic Frameworks: Emerging Platforms for Sensing and Food Safety Applications.
Foods 2025;
14:2060. [PMID:
40565669 DOI:
10.3390/foods14122060]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2025] [Revised: 05/31/2025] [Accepted: 06/07/2025] [Indexed: 06/28/2025] Open
Abstract
Carbon quantum dots (CQDs), with their excellent photoluminescence, tunable surface chemistry, and low toxicity, have emerged as versatile nanomaterials in sensing technologies. Meanwhile, metal-organic frameworks (MOFs) possess exceptionally porous architectures and extensive surface areas, and tunable functionalities ideal for molecular recognition and analyte enrichment. The synergistic integration of CQDs and MOFs has significantly expanded the potential of hybrid materials with enhanced selectivity, sensitivity, and multifunctionality. While several reviews have addressed QD/MOF systems broadly, this review offers a focused and updated perspective on CQDs@MOFs composites specifically tailored for food safety and environmental sensing applications. This review provides a comprehensive analysis of recent advances in the design, synthesis, and surface functionalization of these hybrids, emphasizing the mechanisms of interaction, photophysical behavior, and performance advantages over conventional sensors. Special attention is given to their use in detecting food contaminants such as heavy metals, pesticides, antibiotics, mycotoxins, pathogens, and aromatic compounds. Key strategies to enhance stability, selectivity, and detection limits are highlighted, and current challenges and future directions for practical deployment are critically discussed.
Collapse