1
|
Hajighasemi Z, Nahipour A, Ghorbani-Choghamarani A, Taherinia Z. Efficient and biocompatible new palladium-supported boehmite nanoparticles: synthesis, characterization and application in Suzuki-Miura and Mizoroki-Heck coupling reactions. NANOSCALE ADVANCES 2023; 5:4925-4933. [PMID: 37705777 PMCID: PMC10496902 DOI: 10.1039/d3na00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
Palladium complex-supported on boehmite (Pd(0)-SMTU-boehmite) nanoparticles were synthesized and characterized by using XRD, SEM, EDS, TGA, BET, ICP and FT-IR techniques. When applied as a new catalyst for C-C coupling reactions of Suzuki-Miyaura and Mizoroki-Heck in PEG-400 solvent, the Pd(0)-SMTU-boehmite nanoparticles showed excellent activity and recyclability. The study of palladium leaching by the ICP-OES technique and hot filtration led to the catalyst exhibiting excellent stability and recyclability.
Collapse
Affiliation(s)
- Zahra Hajighasemi
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| | - Ali Nahipour
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| | | | - Zahrra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| |
Collapse
|
2
|
Moradi Z, Ghorbani-Choghamarani A. Fe 3O 4@SiO 2@KIT-6@2-ATP@Cu I as a catalyst for hydration of benzonitriles and reduction of nitroarenes. Sci Rep 2023; 13:7645. [PMID: 37169905 PMCID: PMC10175259 DOI: 10.1038/s41598-023-34409-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023] Open
Abstract
In this paper, a new type of magnetic mesoporous material (Fe3O4@SiO2@KIT-6@2-ATP@CuI) was designed and synthesized and its application in the synthesis of amides and anilines was investigated. The structure of Fe3O4@SiO2@KIT-6@2-ATP@CuI was characterized and identified using FTIR, SEM, XRD, TGA, BET, VSM, and ICP techniques. An external magnet can easily remove the synthesized catalyst from the reaction medium, and be reused in several consequence runs.
Collapse
Affiliation(s)
- Zahra Moradi
- Department of Chemistry, Faculty of Sciences, Ilam University, P.O. Box 69315516, Ilam, Iran
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran.
| |
Collapse
|
3
|
Koosha S, Alavinia S, Ghorbani-Vaghei R. CuI nanoparticle-immobilized on a hybrid material composed of IRMOF-3 and a sulfonamide-based porous organic polymer as an efficient nanocatalyst for one-pot synthesis of 2,4-diaryl-quinolines. RSC Adv 2023; 13:11480-11494. [PMID: 37063714 PMCID: PMC10091365 DOI: 10.1039/d3ra01164j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
As a significant class of synthetic and natural products with multiple biological activities, quinolines are used in medical and electronic devices. In this study, a novel method is presented to synthesize 2,4-diarylquinoline derivatives via a simple one-pot multicomponent reaction between phenylacetylenes, aniline derivatives, and aldehydes in CH3CN using IRMOF-3/PSTA/Cu. Notably, polymer/MOF is stabilized through a reaction between a sulfonamide-triazine-based porous organic polymer [poly (sulfonamide-triazine)](PSTA) and an amino-functionalized zinc metal-organic framework (IRMOF-3). Next, the prepared nanocomposites (IRMOF-3/PSTA) are modified using copper iodide nanoparticles (CuI NPs). Overall, the high product yields, facile recovery of nanocatalysts, short reaction times, and broad substrate range make this process environmentally friendly, practical, and economically justified.
Collapse
Affiliation(s)
- Samaneh Koosha
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamadan Iran +98-8138380709 +98-8138380709
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamadan Iran +98-8138380709 +98-8138380709
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamadan Iran +98-8138380709 +98-8138380709
| |
Collapse
|
4
|
Nikseresht A, Bagherinia R, Mohammadi M, Mehravar R. Phosphomolybdic acid hydrate encapsulated in MIL-53 (Fe): a novel heterogeneous heteropoly acid catalyst for ultrasound-assisted regioselective nitration of phenols. RSC Adv 2022; 13:674-687. [PMID: 36605662 PMCID: PMC9783539 DOI: 10.1039/d2ra07077d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
In this study, a heterogeneous catalyst, PMA@MIL-53 (Fe) (MIL ⇒ Matériaux de l'Institut Lavoisier), has been used to replace the usual mineral acids such as sulfuric acid. A wide variety of nitration methods require the use of a mixture of acids such as concentrated nitric acid and sulfuric acid, which result in producing a large amount of acidic waste. During recent years, the use of the heterogeneous system for the nitration of aromatic compounds has been highly considered and used by chemists due to some specific advantages, i.e. easy separation of the product from the reaction mixture, the possibility of recycling and reusing the catalyst, etc. Herein, the catalyst was synthesized using a metal-organic framework and a heteropoly phosphomolybdic acid. The PMA@MIL-53 (Fe) was prepared using a similar method of MIL-53 (Fe) synthesis. Afterwards, FeCl3·6H2O and 1,4-benzene dicarboxylic acid (BDC) in a dimethylformamide solution were placed in an ultrasound bath and, then, HPA (heteropoly acid) was added to the reaction mixture. The PMA (phosphomolybdic acid) encapsulation in MIL-53 (Fe) was confirmed using various analysis. Under optimal conditions, the catalytic activity of PMA@MIL-53 (Fe) was evaluated in nitration of phenol under ultrasonic waves. Besides, the ratio of the two products of ortho and para was obtained using GC. Optimum conditions were reached after 15 minutes, in such a way that the loaded PMA was 0.02 g under optimal conditions, the efficiencies of ortho-nitrophenol and para nitrophenol were 54.98 and 45.01, respectively.
Collapse
Affiliation(s)
- Ahmad Nikseresht
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| | - Rasoul Bagherinia
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| | - Reza Mehravar
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| |
Collapse
|
5
|
Ghorbani-Choghamarani A, Aghavandi H, Talebi SM. A new copper-supported zinc ferrite as a heterogeneous magnetic nanocatalyst for the synthesis of bis(pyrazolyl)methanes and oxidation of sulfides. Sci Rep 2022; 12:20775. [PMID: 36456752 PMCID: PMC9715624 DOI: 10.1038/s41598-022-25170-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
In this paper, we report the synthesis of ZnFe2O4@SiO2@APTES@DHBS-Cu as a novel magnetic nanocatalyst, in a mild and green environment. The structure of the described magnetic compound was characterized by different physicochemical techniques including XRD, EDS, AAS, SEM, FT-IR, X-ray elemental mapping, TGA, and VSM analyses. The prepared magnetic nanoparticles exhibit excellent catalytic activity in synthesizing bis (pyrazolyl)methanes and oxidation of sulfide derivatives under green conditions. The heterogeneous nature of the catalyst was confirmed via the hot filtration experiment. Further, ZnFe2O4@SiO2@APTES@DHBS-Cu showed high efficiency and reusability that could be reused for at least five consecutive runs.
Collapse
Affiliation(s)
| | - Hamid Aghavandi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Seyed Mahdi Talebi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
6
|
Aghavandi H, Ghorbani-Choghamarani A, Mohammadi M. Mesoporous SBA-15@Tromethamine-Pr: Synthesis, Characterization and Its Catalytic Application in the Synthesis of Bis(Pyrazolyl)Methanes. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2147202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Hamid Aghavandi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | | | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
7
|
Ghiai R, Alavinia S, Ghorbani-Vaghei R. Chlorosulfonic acid coated on porous organic polymer as a bifunctional catalyst for the one-pot three-component synthesis of 1,8-naphthyridines. RSC Adv 2022; 12:27723-27735. [PMID: 36320279 PMCID: PMC9516894 DOI: 10.1039/d2ra05070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of six-membered oxygen- and nitrogen-containing heterocycles has been regarded as the most fundamental issue in organic chemistry and the chemical industry because these heterocycles are used in producing high-value products. In this study, an efficient, economic, sustainable, and green protocol for their multicomponent synthesis has been developed. The one-pot direct Knoevenagel condensation-Michael addition-cyclization sequences for the transformation of aromatic aldehydes, malononitrile, and 2-aminopyridine generate the corresponding 1,8-naphthyridines over a novel mesoporous bifunctional organocatalyst supported cholorosulfonic acid [poly(triazine-benzene sulfonamide)-SO3H (PTBSA-SO3H)] under ambient conditions. The catalyst was used for the formation of 1,8-naphthyridine derivatives for six runs. The current strategy provided a wider substrate range, and short reaction times.
Collapse
Affiliation(s)
- Ramin Ghiai
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98(81)38380647
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98(81)38380647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98(81)38380647
| |
Collapse
|
8
|
Ghobakhloo F, Azarifar D, Mohammadi M, Ghaemi M. γ‐Fe
2
O
3
@Cu
3
Al‐LDH/HEPES a novel heterogeneous amphoteric catalyst for synthesis of annulated pyrazolo[3,4‐d]pyrimidines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Farzaneh Ghobakhloo
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| | - Davood Azarifar
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science Ilam University Ilam P.O. Box 69315516 Iran
| | - Masoumeh Ghaemi
- Department of Organic Chemistry, Faculty of Chemistry Bu–Ali Sina University Hamedan Iran
| |
Collapse
|
9
|
Györke G, Dancsó A, Volk B, Bezúr L, Hunyadi D, Szalóki I, Milen M. Direct Use of Copper-Containing Minerals in Goldberg Arylation of Amides. Catal Letters 2022. [DOI: 10.1007/s10562-022-03989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Bhardwaj D, Dhawan K, Singh R. On water greener synthesis of pyrido[2,3-d]pyrimidines using Ag-TiO2 nanocomposite catalyst under sonication. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Motahari S, Khazaei A. Preparation and Characterization of Co (II) Supported on Modified Magnetic Fe3O4 Nanoparticles and Its Application as Catalyst for the Synthesis of 2-Amino-3-Cyanopyridines. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2021253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sara Motahari
- Department of Organic Chemistry, Bu‐Ali Sina University, Hamedan, Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Bu‐Ali Sina University, Hamedan, Iran
| |
Collapse
|