1
|
Baye AF, Abebe MW, Kim H. Boron-Nitrogen-Edged Biomass-Derived Carbon: A Multifunctional Approach for Colorimetric Detection of H 2O 2, Flame Retardancy, and Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402449. [PMID: 38804870 DOI: 10.1002/smll.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Enhancing the concentration and type of nitrogen (N) dopants within the Sp2-carbon domain of carbon recycled from biomass sources is an efficient approach to mimic CNT, GO, and rGO to activate oxidants such as H2O2, excluding toxic chemicals and limiting reaction steps. However, monitoring the kind and concentration of N species in the Sp2-C domain is unlikely with thermal treatments only. A high temperature for graphitization reduces N moieties, leading to low electron density. This inhibits H2O2 adsorption and activation on catalyst surfaces. In this study, coffee waste (CW) is converted into B, N-doped biochar (BXNbY) using boric acid-assisted pyrolysis (H3BO3 mass = X and carbonization temperature = Y) under N2 to overcome the challenge. The B dopant regulates the concentration and type of N, provides Lewis's acid sites, and converts graphitic-N to pyridine-N in BXNbY. The optimized B3Nb900 exhibits excellent colorimetric sensing performance toward H2O2 with a low detection limit (36.9 nM) and high selectivity in the presence of many interferences and milk samples due to high pyridinic-N and Sp2 domain sizes. Interestingly, B enhances other properties of N-containing CW-derived carbon and introduces self-extinguishing and tribopositive properties. Hence, BXNbY-coated polyurethane foam shows excellent flame retardancy and energy harvesting performance.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Medhen W Abebe
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
2
|
Cheng D, Li Y, Zheng X, Guo Y. Effective elimination of Hg(II) from water bodies with acid-modified magnetic biomass spent coffee grounds: conditional optimization and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44289-44307. [PMID: 38949731 DOI: 10.1007/s11356-024-34058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
To maximize the efficiency of biomass waste utilization and waste management, a novel acid-modified magnetic biomass spent coffee grounds (NiFe2O4/SCG) was obtained by pyrolysis at 473 K and co-precipitation methods and employed to eliminate bivalent mercury (Hg(II)) in water bodies. The prepared NiFe2O4/SCG adsorbent exhibits remarkable magnetism with a strength of 45.78 emu/g and can easily be separated from water via a magnetic force. The adsorption of Hg(II) over the NiFe2O4/SCG has an optimal conditions of pH = 8, T = 39 ℃, and dosage of 0.055 g/L, and the maximal adsorption capacity for Hg(II) is 167.44 mg/g via Response Surface Methodology optimization. The removal of Hg(II) over NiFe2O4/SCG primarily involves ion exchange, electrostatic attraction, and chelation; conforms to the pseudo-second-order kinetic and Langmuir models; and is an endothermic reaction. Additionally, the magnetic biomass NiFe2O4/SCG has good regeneration capability and stability. The application research reveal that inorganic salt ions, nitrogen fertilizer urea, humus, and other contaminants in different actual water bodies (river water, lake water, and the effluent of sewage treatment plant) have little effect on the adsorption of Hg(II) over the NiFe2O4/SCG. The prepared adsorbent NiFe2O4/SCG has practical application value for removing Hg(II) from water bodies.
Collapse
Affiliation(s)
- Dingli Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yiwen Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinyu Zheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongfu Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
3
|
Rodriguez-Quiroz ES, Olivares-Xometl O, Santacruz-Vázquez V, Santacruz-Vázquez C, Arellanes-Lozada P, Rubio-Rosas E. Production of Cellulosic Microfibers from Coffee Pulp via Alkaline Treatment, Bleaching and Acid Hydrolysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7607. [PMID: 38138748 PMCID: PMC10744440 DOI: 10.3390/ma16247607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
The present work deals with the production of cellulosic microfibers (CMFs) from coffee pulp. The experimental development corresponds to an experimental design of three variables (concentration, temperature and time) of alkaline treatment for delignification, finding that concentration, temperature and time were the most representative variables. Higher delignification was achieved by bleaching cellulosic fibers, followed by acid hydrolysis, thus producing cellulosic fibers with an average diameter of 5.2 µm, which was confirmed using scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). An X-ray diffraction (XRD) analysis revealed, via the crystallinity index, the presence of Type I cellulose and removal of lignocellulosic compounds through chemical treatments. The proximate chemical analysis (PChA) of coffee pulp helped to identify 17% of the crude fiber corresponding to the plant cell wall consisting of lignocellulosic compounds. The initial cellulose content of 26.06% increased gradually to 48.74% with the alkaline treatment, to 57.5% with bleaching, and to 64.7% with acid hydrolysis. These results attested to the rich cellulosic content in the coffee pulp.
Collapse
Affiliation(s)
- Eliud S. Rodriguez-Quiroz
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 sur, Puebla 72570, Mexico; (E.S.R.-Q.); (O.O.-X.); (V.S.-V.)
| | - Octavio Olivares-Xometl
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 sur, Puebla 72570, Mexico; (E.S.R.-Q.); (O.O.-X.); (V.S.-V.)
| | - Verónica Santacruz-Vázquez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 sur, Puebla 72570, Mexico; (E.S.R.-Q.); (O.O.-X.); (V.S.-V.)
| | - Claudia Santacruz-Vázquez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 sur, Puebla 72570, Mexico; (E.S.R.-Q.); (O.O.-X.); (V.S.-V.)
| | - Paulina Arellanes-Lozada
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 sur, Puebla 72570, Mexico; (E.S.R.-Q.); (O.O.-X.); (V.S.-V.)
| | - Efraín Rubio-Rosas
- Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Prol. 24 sur y Av. San Claudio, Puebla 72570, Mexico;
| |
Collapse
|
4
|
Singh AK, Basireddy T, Moran JL. Eliminating waste with waste: transforming spent coffee grounds into microrobots for water treatment. NANOSCALE 2023; 15:17494-17507. [PMID: 37867441 DOI: 10.1039/d3nr03592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Water pollutants such as oil spills, industrial dyes, and microplastics threaten public health and aquatic ecosystems. There are considerable challenges in removing water contaminants using traditional methods. Several studies have been conducted in recent years to develop effective water purification materials. Despite this, the mass production of most materials is extremely challenging because they involve multiple intricate steps and sophisticated equipment. Herein, we report the facile synthesis of spent coffee ground (SCG)-derived magnetic microrobots, which we dub "CoffeeBots", to remove oil, organic dyes, and microplastic pollution from contaminated seawater. In order to meet eco-friendly, high-yield and low-cost requirements, iron oxide nanoparticles (IONPs) were deposited on biodegradable SCGs using green chemistry. The IONPs on CoffeeBots facilitate magnetic navigation and recycling, microswarm assembly, and ease of retrieval after water remediation tasks. CoffeeBots' intrinsic surface hydrophobicity enables efficient on-the-fly capture and removal of oil droplets and microplastics from contaminated water with remote magnetic guidance. CoffeeBots were also functionalized with ascorbic acid (AA@CoffeeBots) to remove methylene blue (MB) dye contaminants from polluted seawater. SCGs and AA act as bioadsorbent and reducing agent, respectively, for MB dye removal whereas magnetic propulsion enhances mixing and accelerates MB decolorization. These CoffeeBots can be recycled numerous times for removing oil spills, organic dyes, and microplastics from the seawater. CoffeeBots hold considerable potential as sustainable, recyclable, and low-cost remediation agents for water treatment in the near future.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Mechanical Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA.
| | - Tarini Basireddy
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA.
- Department of Bioengineering, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| |
Collapse
|
5
|
Bartczak P, Stachowiak J, Szmitko M, Grząbka-Zasadzińska A, Borysiak S. Multifunctional Polyurethane Composites with Coffee Grounds and Wood Sawdust. MATERIALS (BASEL, SWITZERLAND) 2022; 16:278. [PMID: 36614616 PMCID: PMC9822441 DOI: 10.3390/ma16010278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Currently, the fundamental activity that will allow for the development of an economy with closed circulation is the management of food waste and production waste for the preparation of biocomposites. The use of waste materials of natural origin allows for the creation of innovative composites with improved physicochemical and functional properties. The present investigation concerns the use of coffee grounds (2.5-20 wt.%) and oak sawdust (2.5-20 wt.%) as effective fillers of rigid polyurethane foam. Innovative composite materials, previously indebted in the literature, were subjected to the necessary analyses to determine the application abilities: processing times, free density, water absorption, dimensional stability, mechanical properties (compressive strength), thermal conductivity, morphology, and flame resistance. The results with respect to the mechanical tests turned out to be the key. Increasing the number of coffee additives has a positive effect on the compressive strength. The addition of this filler in the range of 5-15 wt.% increased the compressive strength of the composites, 136-139 kPa, compared to the reference sample, 127 kPa. The key parameter analysed was thermal conductivity. The results obtained were in range of the requirements, that is, 0.022-0.024 W/m·K for all used amounts of fillers 2.5-20 wt.%. This is extremely important since these materials are used for insulation purposes. The results of the burning-behaviour test have confirmed that the addition of renewable materials does not negatively affect the fire resistance of the received foams; the results were obtained analogously to those obtained from the reference sample without the addition of fillers. The height of the flame did not exceed 17 cm, while the flame decay time was 17 s for the reference sample and the composite with coffee grounds and 18 s for the composite with oak sawdust. In this work, the practical application of bioorganic waste as an innovative filler for the insulation of flooded polyurethane foam is described for the first time. The introduction of fillers of natural origin into the polymer matrix is a promising method to improve the physicochemical and functional properties of rigid polyurethane foams. Composites modified with coffee grounds and sawdust are interesting from a technological, ecological, and economic point of view, significantly increasing the range of use of foam in various industries.
Collapse
|
6
|
Alanazi AN, AlSalem HS, Hajri AK, Binkadem MS, Al-Goul ST, Moussa SA, Keshk AA, Almutairi FM, Abu-Rayyan A. Carboxymethyl cellulose mediated growth of V 2O 5 nanorod by green strategy for energy storage utilization using electrochemical studies. Int J Biol Macromol 2022; 217:606-614. [PMID: 35843402 DOI: 10.1016/j.ijbiomac.2022.07.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Vanadium pentoxide has the most exciting oxidation states, but, Vanadium pentoxide (V2O5) has low capacitance due to poor electrical conductivity and ionic diffusivity. So, encapsulating pentoxide in carbonaceous materials or metals, shrinking it to the nanoscale, or changing its morphology can improve capacitance performance. Herein, we describe a green synthesis of V2O5NPs with carboxymethyl cellulose (CMC) that typically acts as a reducing and stabilizing agent using the -COOH and -OH group. The physicochemical characterization of prepared samples reveals the prominent peak in UV-vis spectra at 265 nm confirming the formation of V2O5NPs with particle sizes between 200 and 220 nm. The theoretical surface area for the nanocomposite was 76.5 m2/g. The calcination temperature is essential to determine a material's specific capacitance. Due to decreased oxide agglomeration, the V2O5-green modified electrode exhibits superior electrochemical performance around 223 F g-1 than Ac alone (160 F g-1). The finding demonstrated excellent cyclic stability with reduced fluctuation in capacitance. Because of its exceptional electrochemical performance and simplicity of access, this AC/V2O5 nanocomposite can be helpful as an electrode for energy storage applications.
Collapse
Affiliation(s)
- Amal N Alanazi
- Department of Chemistry, Khafji University College, University of Hafr Al Batin, Saudi Arabia.
| | - Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Amira K Hajri
- Department of Chemistry, University College Alwajh, University of Tabuk, 71421, Saudi Arabia.
| | - Mona S Binkadem
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
| | - Soha T Al-Goul
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia.
| | - Souad A Moussa
- Department of Chemistry, Khafji University College, University of Hafr Al Batin, Saudi Arabia.
| | - Ali A Keshk
- Department of Chemistry, College of Science, University of Tabuk, Saudi Arabia
| | - Fahad M Almutairi
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Abu-Rayyan
- Department of Chemistry, Faculty of Science, Applied Science Private University, P.O. Box 166, Amman 11931, Jordan
| |
Collapse
|
7
|
Chahkamali FO, Sobhani S, Sansano JM. A novel base-metal multifunctional catalyst for the synthesis of 2-amino-3-cyano-4H-chromenes by a multicomponent tandem oxidation process. Sci Rep 2022; 12:2867. [PMID: 35190576 PMCID: PMC8861043 DOI: 10.1038/s41598-022-06759-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
A novel base-metal multifunctional nanomagnetic catalyst is prepared by the immobilization of tungstate anions onto γ-Fe2O3 supported with imidazolium moieties. The (γ-Fe2O3-Im-Py)2WO4 was fully characterized using FT-IR, XPS, TEM, FESEM, ICP, TGA, VSM and XRD and used as a multifunctional heterogeneous catalyst for the synthesis of 2-amino-3-cyano-4H-chromenes via a multicomponent tandem oxidation process starting from alcohols under solvent-free conditions. During this process, tungstate catalyzes the oxidation of a wide range of alcohols in the presence of TBHP as a clean source. The in-situ formed aldehydes are condensed with malononitrile and β-dicarbonyl compounds/naphthols/4-hydroxycumarin through promotion by pyridine and imidazolium moieties of the catalyst. By this method, a variety of 2-amino-3-cyano-4H-chromenes are generated in good to high yields from alcohols as inexpensive and easily available starting materials. The catalyst is recovered easily by the aid of an external magnetic field and reused in five successive runs with insignificant decreasing activity.
Collapse
Affiliation(s)
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.
| | - Jose Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
8
|
Azhdari A, Azizi N, Sanaeishoar H, Tahanpesar E. Sb(III)-Impregnated Magnetic Carbon Nitride Nanosheets: Preparation, Characterization, and Evaluation of Its Catalytic Activity for Synthesis of Imidazo-Pyridines. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2036776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Asieh Azhdari
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Haleh Sanaeishoar
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Elham Tahanpesar
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|