Mohammadi M, Ghorbani-Choghamarani A. Hercynite silica sulfuric acid: a novel inorganic sulfurous solid acid catalyst for one-pot cascade organic transformations.
RSC Adv 2022;
12:26023-26041. [PMID:
36199605 PMCID:
PMC9469644 DOI:
10.1039/d2ra03481f]
[Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/01/2022] [Indexed: 12/18/2022] Open
Abstract
Herein, we delignated the synthesis of a novel inorganic sulfurous magnetic solid acid catalyst by the immobilization of an extremely high content of sulfuric acid functionalities on the amorphous silica-modified hercynite nanomagnetic core–shell via a simple method. Silica sulfuric acid (SSA) modified hercynite nanocomposite (hercynite@SSA) combines excellent recoverability and stability characteristics of hercynite (which can be regarded as a ferro spinel with Fd3m space group and cubic crystal structure) with the strong Brønsted acid properties of –SO3H groups. This nanomagnetic solid acid was found to be an efficient and facile strong solid acid catalyst for the synthesis of bis(pyrazolyl)methanes via two different one-pot multicomponent methodologies under green conditions. The hercynite@SSA catalyst shows excellent catalytic activity and reusability in the ethanolic medium among different solid acid materials. A plausible reaction mechanism is proposed for this synthesis.
A novel inorganic sulfurous nanomagnetic solid acid composite was synthesized and its catalytic activity was evaluated in the synthesis of bis(pyrazolyl)methane derivatives. The catalyst displayed excellent activity and recoverability under green conditions.![]()
Collapse