1
|
Assis JEDE, Souza JRBDE, Fitzhugh K, Christoffersen ML. A new species of Euclymene (Maldanidae, Annelida) from Brazil, with new combinations, and phylogenetic implications for Euclymeninae. AN ACAD BRAS CIENC 2022; 94:e20210283. [PMID: 36541974 DOI: 10.1590/0001-3765202220210283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022] Open
Abstract
Maldanids are tube-building polychaetes, known as bamboo-worms; inhabit diverse marine regions throughout the world. The subfamily Euclymeninae was proposed to include forms with anal and cephalic plates, a funnel-shaped pygidium, and a terminal anus. Euclymene, the type genus of Euclymeninae, has about 18 valid species. Euclymene vidali sp. nov. is defined and members of the species described from Northeastern Brazil. Members of this species have 23 chaetigers, and one pre-pygidial achaetous segment; nuchal grooves extend through three quarters of the cephalic plate, and there is one acicular spine with a denticulate tip. Euclymene africana, and E. watsoni, are here recognized, respectively, as Isocirrus africana comb. nov., and I. watsoni comb. nov. Three monotypic genera are invalid: Macroclymenella, Eupraxillella, and Pseudoclyemene; their species should be recognized as Clymenella stewartensis com. nov., Praxillella antarctica com. nov., and Praxillela quadrilobata com. nov., respectively. An identification key and a comparative table for all species of Euclymene are provided. A comparative table for all genera of Euclymeninae is also furnished. The paraphyletic status of Euclymene and Euclymeninae is discussed. The taxon Maldanoplaca is not code compliant and should only be regarded as an informal name.
Collapse
Affiliation(s)
- José Eriberto DE Assis
- Prefeitura Municipal de Bayeux, Departamento de Educação Básica, Rua Santa Tereza, 600, 58306-070 Bayeux, PB, Brazil
| | - José Roberto Botelho DE Souza
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Zoologia, Av. Prof. Morais Rego, 1235, 50670-901 Recife, PE, Brazil
| | - Kirk Fitzhugh
- Natural History Museum of Los Angeles County, 900 Exposition Blvd, 90007 Los Angeles, California, USA
| | - Martin Lindsey Christoffersen
- Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia, Cidade Universitária, 58059-900 João Pessoa, PB, Brazil
| |
Collapse
|
2
|
Mortimer K, Fitzhugh K, dos Brasil AC, Lana P. Who's who in Magelona: phylogenetic hypotheses under Magelonidae Cunningham & Ramage, 1888 (Annelida: Polychaeta). PeerJ 2021; 9:e11993. [PMID: 35070516 PMCID: PMC8759375 DOI: 10.7717/peerj.11993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
Known as shovel head worms, members of Magelonidae comprise a group of polychaetes readily recognised by the uniquely shaped, dorso-ventrally flattened prostomium and paired ventro-laterally inserted papillated palps. The present study is the first published account of inferences of phylogenetic hypotheses within Magelonidae. Members of 72 species of Magelona and two species of Octomagelona were included, with outgroups including members of one species of Chaetopteridae and four of Spionidae. The phylogenetic inferences were performed to causally account for 176 characters distributed among 79 subjects, and produced 2,417,600 cladograms, each with 404 steps. A formal definition of Magelonidae is provided, represented by a composite phylogenetic hypothesis explaining seven synapomorphies: shovel-shaped prostomium, prostomial ridges, absence of nuchal organs, ventral insertion of palps and their papillation, presence of a burrowing organ, and unique body regionation. Octomagelona is synonymised with Magelona due to the latter being paraphyletic relative to the former. The consequence is that Magelonidae is monotypic, such that Magelona cannot be formally defined as associated with any phylogenetic hypotheses. As such, the latter name is an empirically empty placeholder, but because of the binomial name requirement mandated by the International Code of Zoological Nomenclature, the definition is identical to that of Magelonidae. Several key features for future descriptions are suggested: prostomial dimensions, presence/absence of prostomial horns, morphology of anterior lamellae, presence/absence of specialised chaetae, and lateral abdominal pouches. Additionally, great care must be taken to fully describe and illustrate all thoracic chaetigers in descriptions.
Collapse
Affiliation(s)
- Kate Mortimer
- Natural Sciences, Amgueddfa Cymru–National Museum Wales, Cardiff, Wales, United Kingdom
| | - Kirk Fitzhugh
- Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| | - Ana Claudia dos Brasil
- Departamento de Biologia Animal, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Paulo Lana
- Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Sul, Paraná, Brazil
| |
Collapse
|
4
|
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in? Theory Biosci 2018; 137:169-184. [PMID: 30132255 DOI: 10.1007/s12064-018-0269-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/26/2018] [Indexed: 12/23/2022]
Abstract
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to 'extend' the Modern Synthesis-derived 'standard evolutionary theory' (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES-published by Laland and collaborators in 2015-in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework.
Collapse
|
6
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Sequence Data, Phylogenetic Inference, and Implications of Downward Causation. Acta Biotheor 2016; 64:133-60. [PMID: 26961079 DOI: 10.1007/s10441-016-9277-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/02/2016] [Indexed: 12/30/2022]
Abstract
Framing systematics as a field consistent with scientific inquiry entails that inferences of phylogenetic hypotheses have the goal of producing accounts of past causal events that explain differentially shared characters among organisms. Linking observations of characters to inferences occurs by way of why-questions implied by data matrices. Because of their form, why-questions require the use of common-cause theories. Such theories in phylogenetic inferences include natural selection and genetic drift. Selection or drift can explain 'morphological' characters but selection cannot be causally applied to sequences since fitness differences cannot be directly associated with individual nucleotides or amino acids. The relation of selection to sequence data is by way of downward or top-down causation from those phenotypes upon which selection occurs. The application of phylogenetic inference to explain sequence data is thus restricted to instances where drift is the relevant theory; those nucleotides or amino acids that can be explained via downward causation are precluded from inclusion in the data matrix. The restrictions on the inclusion of sequence data in phylogenetic inferences equally apply to species hypotheses, precluding the more restrictive approach known as DNA barcoding. Not being able to discern drift and selection as relevant causal mechanisms can severely constrain the inclusion and explanations of sequence data. Implications of such exclusion are discussed in relation to the requirement of total evidence.
Collapse
|