1
|
Shreesha L, Levin M. Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25010131. [PMID: 36673272 PMCID: PMC9858125 DOI: 10.3390/e25010131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 05/25/2023]
Abstract
Biological genotypes do not code directly for phenotypes; developmental physiology is the control layer that separates genomes from capacities ascertained by selection. A key aspect is cellular competency, since cells are not passive materials but descendants of unicellular organisms with complex context-sensitive behavioral capabilities. To probe the effects of different degrees of cellular competency on evolutionary dynamics, we used an evolutionary simulation in the context of minimal artificial embryogeny. Virtual embryos consisted of a single axis of positional information values provided by cells' 'structural genes', operated upon by an evolutionary cycle in which embryos' fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated in two modes: hardwired development (genotype directly encodes phenotype), and a more realistic mode in which cells interact prior to evaluation by the fitness function ("regulative" development). We find that even minimal ability of cells with to improve their position in the embryo results in better performance of the evolutionary search. Crucially, we observed that increasing the behavioral competency masks the raw fitness encoded by structural genes, with selection favoring improvements to its developmental problem-solving capacities over improvements to its structural genome. This suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in to improvements in the intelligence of its agential substrate, with reduced pressure on the structural genome. This kind of feedback loop in which evolution increasingly puts more effort into the developmental software than perfecting the hardware explains the very puzzling divergence of genome from anatomy in species like planaria. In addition, it identifies a possible driver for scaling intelligence over evolutionary time, and suggests strategies for engineering novel systems in silico and in bioengineering.
Collapse
Affiliation(s)
- Lakshwin Shreesha
- UFR Fundamental and Biomedical Sciences, Université Paris Cité, 75006 Paris, France
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
3
|
Herrington ER, Parker LS. Narrative methods for assessing "quality of life" in hand transplantation: five case studies with bioethical commentary. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2019; 22:407-425. [PMID: 30610430 DOI: 10.1007/s11019-018-09881-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite having paved the way for face, womb and penis transplants, hand transplantation today remains a small hybrid of reconstructive microsurgery and transplant immunology. An exceptionally limited patient population internationally (N < 200) complicates medical researchers' efforts to parse outcomes "objectively." Presumed functional and psychosocial benefits of gaining a transplant hand must be weighed in both patient decisions and bioethical discussions against the difficulty of adhering to post-transplant medications, the physical demands of hand transplant recovery on the patient, and the serious long-term health risks of immunosuppressant drugs. This paper relates five narratives of hand transplantation drawn from an oral history project to show how narrative methods can and should inform ethical evaluations and the clinical process of hand transplantation. The interviews with patients and their partners analyzed here lead us to suggest that qualitative accounts of patient experiences should be used to complement clinical case studies reported in medical journals and to help develop instruments to assess outcomes more systematically.
Collapse
Affiliation(s)
- Emily R Herrington
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA.
- , 5440 5th Avenue #11, Pittsburgh, PA, 15232, USA.
| | - Lisa S Parker
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| |
Collapse
|
4
|
Truchetet ME, Pradeu T. Re-thinking our understanding of immunity: Robustness in the tissue reconstruction system. Semin Immunol 2018; 36:45-55. [PMID: 29550156 DOI: 10.1016/j.smim.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022]
Abstract
Robustness, understood as the maintenance of specific functionalities of a given system against internal and external perturbations, is pervasive in today's biology. Yet precise applications of this notion to the immune system have been scarce. Here we show that the concept of robustness sheds light on tissue repair, and particularly on the crucial role the immune system plays in this process. We describe the specific mechanisms, including plasticity and redundancy, by which robustness is achieved in the tissue reconstruction system (TRS). In turn, tissue repair offers a very important test case for assessing the usefulness of the concept of robustness, and identifying different varieties of robustness.
Collapse
Affiliation(s)
- Marie-Elise Truchetet
- Department of Rheumatology, CHU Bordeaux Hospital, Bordeaux, France; ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
5
|
O’Malley MA, Soyer OS, Siegal ML. A Philosophical Perspective on Evolutionary Systems Biology. BIOLOGICAL THEORY 2015; 10:6-17. [PMID: 26085823 PMCID: PMC4465572 DOI: 10.1007/s13752-015-0202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB's progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology.
Collapse
Affiliation(s)
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Mark L. Siegal
- Department of Biology, Center for Genomics and Systems, Biology, New York University, New York, NY, USA
| |
Collapse
|