1
|
Larit F, León F. Therapeutics to Treat Psychiatric and Neurological Disorders: A Promising Perspective from Algerian Traditional Medicine. PLANTS (BASEL, SWITZERLAND) 2023; 12:3860. [PMID: 38005756 PMCID: PMC10674704 DOI: 10.3390/plants12223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Ancient people sought out drugs in nature to prevent, cure, and treat their diseases, including mental illnesses. Plants were their primary source for meeting their healthcare needs. In Algeria, folk medicine remains a fundamental part of the local intangible knowledge. This study aims to conduct a comprehensive ethnomedicinal investigation and documentation of medicinal plants and the different plant formulations traditionally used in Algeria for the treatment of pain, psychiatric, and neurological disorders. It also intends to improve the current knowledge of Algerian folk medicine. Several scientific databases were used to accomplish this work. Based on this investigation, we identified 82 plant species belonging to 69 genera and spanning 38 distinct botanical families used as remedies to treat various psychological and neurological conditions. Their traditional uses and methods of preparation, along with their phytochemical composition, main bioactive constituents, and toxicity were noted. Therefore, this review provides a new resource of information on Algerian medicinal plants used in the treatment and management of neurological and psychological diseases, which can be useful not only for the documentation and conservation of traditional knowledge, but also for conducting future phytochemical and pharmacological studies.
Collapse
Affiliation(s)
- Farida Larit
- Laboratoire d’Obtention de Substances Thérapeutiques (LOST), Université Frères Mentouri-Constantine 1, Route de Ain El Bey, Constantine 25017, Algeria
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
2
|
Zhang L, Liu J, Xu B, Wu D, Wu Y, Li G. β-Carbolines norharman and harman change neurobehavior causing neurological damage in Caenorhabditis elegans. Food Funct 2023; 14:10031-10040. [PMID: 37927231 DOI: 10.1039/d3fo03732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
β-Carbolines norharman and harman, belonging to the class of heterocyclic aromatic amines (HAAs), are typical hazardous substances produced during the thermal processing of food. Compared to other HAAs, there have been limited reports on the toxicity of β-carbolines. Nevertheless, the current studies are concerned with the neurotoxic effects of norharman and harman at high doses. It is still unknown whether the relatively low dose of β-carbolines in foods induces neurotoxicity and the mechanism of the toxicity. In this study, C. elegans was exposed to a series of gradients of norharman and harman (0, 0.05, 5, and 10 mg L-1). The survival rate and indicators of ethology (locomotor behaviors, foraging behavior, and chemotaxis ability) were assessed. The antioxidant system and the contents of neurotransmitters, as well as the activity of acetylcholinesterase (AChE), were evaluated. Additionally, the RNA-seq screening of differentially expressed genes (DEGs) revealed the potential molecular mechanisms of norharman- and harman-induced toxic effects. Our results indicated that the risk of long-term exposure to norharman and harman at low doses (food-related doses) should be emphasized. Moreover, β-carbolines might induce neurotoxicity by causing oxidative damage, regulating the content of neurotransmitters, and interfering with cytochrome P450 metabolism. This study would provide a toxicological basis for the neurotoxicity of β-carbolines and lay the foundation for the risk assessment of endogenous pollutants in food.
Collapse
Affiliation(s)
- Luyao Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Jialu Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Bufan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
3
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Involvement of Midbrain Dopamine Neuron Activity in Negative Reinforcement Learning in Mice. Mol Neurobiol 2021; 58:5667-5681. [PMID: 34387814 DOI: 10.1007/s12035-021-02515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The activity of the midbrain dopamine system reflects the valence of environmental events and modulates various brain structures to modify an organism's behavior. A series of recent studies reported that the direct and indirect pathways in the striatum are critical for instrumental learning, but the dynamic changes in dopamine neuron activity that occur during negative reinforcement learning are still largely unclear. In the present study, by using a negative reinforcement learning paradigm employing foot shocks as aversive stimuli, bidirectional changes in substantia nigra pars compacta (SNc) dopamine neuron activity in the learning and habituation phases were observed. The results showed that in the learning phase, before mice had mastered the skill of escaping foot shocks, the presence of foot shocks induced a transient reduction in the activity of SNc dopamine neurons; however, in the habituation phase, in which the learned skill was automated, it induced a transient increase. Microinjection of a dopamine D1 receptor (D1R) or D2 receptor (D2R) antagonist into the dorsomedial striatum (DMS) significantly impaired learning behavior, suggesting that the modulatory effects of dopamine on both the direct and indirect pathways are required. Moreover, during the learning phase, excitatory synaptic transmission to DMS D2R-expressing medium spiny neurons (D2-MSNs) was potentiated. However, upon completion of the learning and habituation phases, the synapses onto D1R-expressing medium spiny neurons (D1-MSNs) were potentiated, and those onto D2-MSNs were restored to normal levels. The bidirectional changes in both SNc dopamine neuron activity and DMS synaptic plasticity might be the critical neural correlates for negative reinforcement learning.
Collapse
|
5
|
Chang CW, Lo YC, Lin SH, Yang SH, Lin HC, Lin TC, Li SJ, Hsieh CCJ, Ro V, Chung YJ, Chang YC, Lee CW, Kuo CH, Chen SY, Chen YY. Modulation of Theta-Band Local Field Potential Oscillations Across Brain Networks With Central Thalamic Deep Brain Stimulation to Enhance Spatial Working Memory. Front Neurosci 2019; 13:1269. [PMID: 32038122 PMCID: PMC6988804 DOI: 10.3389/fnins.2019.01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/06/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established technique for the treatment of movement and psychiatric disorders through the modulation of neural oscillatory activity and synaptic plasticity. The central thalamus (CT) has been indicated as a potential target for stimulation to enhance memory. However, the mechanisms underlying local field potential (LFP) oscillations and memory enhancement by CT-DBS remain unknown. In this study, we used CT-DBS to investigate the mechanisms underlying the changes in oscillatory communication between the CT and hippocampus, both of which are involved in spatial working memory. Local field potentials (LFPs) were recorded from microelectrode array implanted in the CT, dentate gyrus, cornu ammonis (CA) region 1, and CA region 3. Functional connectivity (FC) strength was assessed by LFP-LFP coherence calculations for these brain regions. In addition, a T-maze behavioral task using a rat model was performed to assess the performance of spatial working memory. In DBS group, our results revealed that theta oscillations significantly increased in the CT and hippocampus compared with that in sham controls. As indicated by coherence, the FC between the CT and hippocampus significantly increased in the theta band after CT-DBS. Moreover, Western blotting showed that the protein expressions of the dopamine D1 and α4-nicotinic acetylcholine receptors were enhanced, whereas that of the dopamine D2 receptor decreased in the DBS group. In conclusion, the use of CT-DBS resulted in elevated theta oscillations, increased FC between the CT and hippocampus, and altered synaptic plasticity in the hippocampus, suggesting that CT-DBS is an effective approach for improving spatial working memory.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, National Yang Ming University, Taipei, Taiwan
| | - Ting-Chun Lin
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Christine Chin-Jung Hsieh
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming University, Academia Sinica, Taipei, Taiwan
| | - Vina Ro
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, National Yang Ming University, Taipei, Taiwan
| | - Yun-Chi Chang
- Department and Institute of Physiology, National Yang Ming University, Taipei, Taiwan
| | - Chi-Wei Lee
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department and Institute of Physiology, National Yang Ming University, Taipei, Taiwan
| | - Chao-Hung Kuo
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Veterans General Hospital, Neurological Institute, Taipei, Taiwan.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan.,Department of Surgery, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming University, Academia Sinica, Taipei, Taiwan
| |
Collapse
|