1
|
Pal G, Cook L, Schulze J, Verbrugge J, Alcalay RN, Merello M, Sue CM, Bardien S, Bonifati V, Chung SJ, Foroud T, Gatto E, Hall A, Hattori N, Lynch T, Marder K, Mascalzoni D, Novaković I, Thaler A, Raymond D, Salari M, Shalash A, Suchowersky O, Mencacci NE, Simuni T, Saunders‐Pullman R, Klein C. Genetic Testing in Parkinson's Disease. Mov Disord 2023; 38:1384-1396. [PMID: 37365908 PMCID: PMC10946878 DOI: 10.1002/mds.29500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gian Pal
- Department of NeurologyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Lola Cook
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jeanine Schulze
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jennifer Verbrugge
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Roy N. Alcalay
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Movement Disorders Division, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Marcelo Merello
- Neuroscience Department FleniCONICET, Catholic University of Buenos AiresBuenos AiresArgentina
| | - Carolyn M. Sue
- Department of NeurologyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research UnitStellenbosch UniversityCape TownSouth Africa
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Emilia Gatto
- Instituto de Neurociencias Buenos AiresAffiliated Buenos Aires UniversityBuenos AiresArgentina
| | - Anne Hall
- Parkinson's FoundationNew YorkNew YorkUSA
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of MedicineJuntendo UniversityTokyoJapan
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
- Neurodegenerative Disorders Collaborative LaboratoryRIKEN Center for Brain ScienceSaitamaJapan
| | - Tim Lynch
- Dublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
| | - Karen Marder
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Deborah Mascalzoni
- Institute for Biomedicine, Eurac ResearchAffiliated Institute of the University of LübeckBolzanoItaly
- Center for Research Ethics and Bioethics, Department of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
| | - Ivana Novaković
- Institute of Human Genetics, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Avner Thaler
- Movement Disorders Unit, Neurological InstituteTel‐Aviv Medical CenterTel AvivIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel‐Aviv UniversityTel AvivIsrael
- Laboratory of Early Markers of Neurodegeneration, Neurological InstituteTel‐Aviv Medical CenterTel AvivIsrael
| | - Deborah Raymond
- Department of NeurologyMount Sinai Beth Israel and Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada‐e Tajrish Comprehensive Neurosurgical Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
| | - Ali Shalash
- Department of Neurology, Faculty of MedicineAin Shams UniversityCairoEgypt
| | - Oksana Suchowersky
- Department of Medicine (Neurology), Medical Genetics and PediatricsUniversity of AlbertaEdmontonAlbertaCanada
| | - Niccolò E. Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for NeurogeneticsNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Tanya Simuni
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Rachel Saunders‐Pullman
- Department of NeurologyMount Sinai Beth Israel and Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Christine Klein
- Institute of NeurogeneticsUniversity of Lübeck and University Hospital Schleswig‐HolsteinLübeckGermany
| |
Collapse
|
2
|
Wang HL, Yeh TH, Huang YZ, Weng YH, Chen RS, Lu CS, Wei KC, Liu YC, Chen YL, Chen CL, Chen YJ, Lin YW, Hsu CC, Chiu CH, Chiu CC. Functional variant rs17525453 within RAB35 gene promoter is possibly associated with increased risk of Parkinson's disease in Taiwanese population. Neurobiol Aging 2021; 107:189-196. [PMID: 34275689 DOI: 10.1016/j.neurobiolaging.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
Our previous study suggests that upregulated RAB35 is implicated in etiology of Parkinson's disease (PD). We hypothesized that upregulated RAB35 results from single nucleotide polymorphisms (SNPs) in RAB35 gene promoter. We identified SNPs within RAB35 gene promoter by analyzing DNA samples of discovery cohort and validation cohort. SNP rs17525453 within RAB35 gene promoter (T>C at position of -66) was significantly associated with idiopathic PD patients. Compared to normal controls, sporadic PD patients had higher C allele frequency. CC and CT genotype significantly increased risk of PD compared with TT genotype. SNP rs17525453 within RAB35 gene promoter leads to formation of transcription factor TFII-I binding site. Results of EMSA and supershift assay indicated that TFII-I binds to rs17525453 sequence of RAB35 gene promoter. Luciferase reporter assays showed that rs17525453 variant of RAB35 gene promoter possesses an augmented transcriptional activity. Our results suggest that functional variant rs17525453 within RAB35 gene promoter is likely to enhance transcriptional activity and upregulate RAB35 protein, which could lead to increased risk of PD in Taiwanese population.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taiwan
| | - Ying-Zu Huang
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Landseed Sports Medicine Center, Landseed International Hospital, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi-Han Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Ulhaq ZS, Garcia CP. Inflammation-related gene polymorphisms associated with Parkinson’s disease: an updated meta-analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00056-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Strong evidence supports the involvement of inflammation processes in the development and progression of Parkinson’s disease (PD), where increasingly correlations have been identified between genetic variations in inflammation-related genes and PD. However, data varies between studies. Therefore, we conducted a meta-analysis to clarify associations between inflammation-related gene polymorphisms and PD risk.
Methods
All studies were identified through online databases. Pooled and stratified groups based on racial descent were assembled to evaluate associations between polymorphisms and PD.
Results
The pooled results showed that protective effects for PD were observed for (1) IL-1α -889 C/T in Asian populations (T vs. C, OR = 0.831, P = 0.031; TT + CT vs. CC, OR = 0.827, P = 0.049); (2) IL-6 -176 G/C in Caucasian populations (CC + GC vs. GG, OR = 0.656, P = 0.000; GC vs. GG, OR = 0.673, P = 0.000); (3) IL-8 -251 A/T (T vs. A, OR = 0.812, P = 0.041; TT vs. AT + AA, OR = 0.663, P = 0.012), particularly in Caucasian populations (TT vs. AT + AA, OR = 0.639, P = 0.010); (4) IL-10 -819 T/C (C vs. T, OR = 0.742, P = 0.034); (5) IL-18 -607 C/A (AA + CA vs. CC, OR = 0.597, P = 0.015; CA vs. CC, OR = 0.534, P = 0.005), and (6) CCR2 +190 G/A (AA vs. GA + GG, OR = 0.552, P = 0.018; AA vs. GG; OR = 0.554; 95% CI 0.336–0.914, P = 0.005). An increased risk of PD was associated with IL-10 -1082 G/A in Asian populations (A vs. G, OR = 1.731, P = 0.000; AA + GA vs. GG, OR = 1.910, P = 0.000). No significant associations with PD were observed for polymorphisms in IL-1β -511 C/T, IL-10 -592 C/A, IL-18 -137 G/C, TNFα -863 C/A, TNFα -857 C/T, TNFα -308 G/A, IFNΥ +874 T/A, and MCP1/CCL2 +2518 A/G.
Conclusions
We suggest that IL-1α -889, IL-6 -176, IL-8 -251, IL-10 -1082, IL-10 -819, IL-18 -607, and CCR2 +190 polymorphisms may be associated with PD risk; however, further studies must verify these conclusions.
Collapse
|