1
|
Dixit D, Zhao Y, Bardhi O, Daneshmand A, Phillips J, Bala T, Rosenthal M, Mohr A, Kandiah P, Kamel AY. Carnitine supplementation in progressive supranuclear palsy. Nutr Clin Pract 2025; 40:742-747. [PMID: 39674916 DOI: 10.1002/ncp.11262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of several neurodegenerative disorders, including progressive supranuclear palsy (PSP). PSP is a Parkinsonian syndrome characterized by a rapidly progressive state that manifests itself as tremors, bradykinesia, and supranuclear gaze palsy. Carnitine plays an essential role in mitochondrial function by transporting fatty acids across the mitochondrial membrane to be used in energy production. Mitochondrial dysfunction can bring about rapid neuronal depolarization and a calcium-mediated cellular apoptosis owing to a loss of oxidative metabolism, likely contributing to the PSP disease process. A White man aged 65 years with PSP presented with small bowel obstruction and severe malnutrition as a result of prior gastrointestinal surgeries for which a gastrostomy tube was placed. During his hospitalization, the patient was found to be deficient in both free and total carnitine. He was treated with levocarnitine supplementation and exhibited marked improvement in tremors, fatigue, and physical therapy activities. Posthospitalization follow-up showed sustained improvement in symptoms with continued levocarnitine supplementation. Treatment of PSP remains largely supportive in nature. No studies have investigated the role of carnitine supplementation in PSP. To our knowledge, this is the first case report to identify improvement in PSP symptoms after carnitine repletion and supportive care. Numerous animal studies have reported on carnitine supplementation in the context of mitochondrial dysfunction associated with neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. Further investigation is necessary to elucidate the precise role of carnitine and other nutrition supplements in the pathophysiology of PSP.
Collapse
Affiliation(s)
- Devika Dixit
- Department of Internal Medicine, University of Florida, Gainesville, Florida, USA
| | - Yang Zhao
- Department of Pharmacy, Carilion Roanoke Memorial Hospital, Roanoke, Virginia, USA
| | - Olgert Bardhi
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Arvin Daneshmand
- Department of Internal Medicine, University of Florida, Gainesville, Florida, USA
| | - Jonathan Phillips
- Department of Rehab Services, University of Florida Health Shands Hospital, Gainesville, Florida, USA
| | - Trina Bala
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Martin Rosenthal
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alicia Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Prem Kandiah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Amir Y Kamel
- Department of Pharmacy, University of Florida Health Shands Hospital, Gainesville, Florida, USA
| |
Collapse
|
2
|
Wang H, Wang B, Liao Y, Niu J, Chen M, Chen X, Dou X, Yu C, Zhong Y, Wang J, Jin N, Kang Y, Zhang H, Tian M, Luo W. Identification of metabolic progression and subtypes in progressive supranuclear palsy by PET molecular imaging. Eur J Nucl Med Mol Imaging 2025; 52:823-835. [PMID: 39438298 DOI: 10.1007/s00259-024-06954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) is a neurodegenerative disorder with diverse clinical presentations that are linked to tau pathology. Recently, Subtype and Stage Inference (SuStaIn) algorithm, an innovative data-driven method, has been developed to model both the spatial-temporal progression and subtypes of disease. This study explores PSP progression using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging and the SuStaIn algorithm to identify PSP metabolic progression subtypes and understand disease mechanisms. METHODS The study included 72 PSP patients and 70 controls, with an additional 24 PSP patients enrolled as a test set, undergoing FDG-PET, dopamine transporter (DAT) PET, and neuropsychological assessments. The SuStaIn algorithm was employed to analyze the FDG-PET data, identifying progression subtypes and sequences. RESULTS Two PSP subtypes were identified: the cortical subtype with early prefrontal hypometabolism and the brainstem subtype with initial midbrain alterations. The cortical subtype displayed greater cognitive impairment and DAT reduction than the brainstem subtype. The test set demonstrates the robustness and reproducibility of the findings. Pathway analysis indicated that disruptions in dopaminergic cortico-basal ganglia pathways are crucial for elucidating the mechanisms of cognitive and behavioral impairment in PSP, leading to the two metabolic progression subtypes. CONCLUSION This study identified two spatiotemporal progression subtypes of PSP based on FDG-PET imaging, revealing significant differences in metabolic patterns, striatal dopaminergic uptake, and clinical profiles, particularly cognitive impairments. The findings highlight the crucial role of dopaminergic cortico-basal ganglia pathways in PSP pathophysiology, especially in the cortical subtype, providing insights into PSP heterogeneity and potential avenues for personalized treatments.
Collapse
Affiliation(s)
- Haotian Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Liao
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiaqi Niu
- Department of Nuclear Medicine and PET-CT Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miao Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET-CT Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET-CT Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET-CT Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET-CT Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nan Jin
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yixin Kang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.
- The College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Mei Tian
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Nuclear Medicine and PET-CT Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Nuclear Medicine and PET-CT Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wei Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Nguyen-Thi PT, Vo TK, Le HT, Nguyen NTT, Nguyen TT, Van Vo G. Translation from Preclinical Research to Clinical Trials: Transdermal Drug Delivery for Neurodegenerative and Mental Disorders. Pharm Res 2024; 41:1045-1092. [PMID: 38862719 DOI: 10.1007/s11095-024-03718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
Neurodegenerative diseases (NDs), particularly dementia, provide significant problems to worldwide healthcare systems. The development of therapeutic materials for various diseases has a severe challenge in the form of the blood-brain barrier (BBB). Transdermal treatment has recently garnered widespread favor as an alternative method of delivering active chemicals to the brain. This approach has several advantages, including low invasiveness, self-administration, avoidance of first-pass metabolism, preservation of steady plasma concentrations, regulated release, safety, efficacy, and better patient compliance. Topics include the transdermal method for therapeutic NDs, their classification, and the mechanisms that allow the medicine to enter the bloodstream through the skin. The paper also discusses the obstacles and potential outcomes of transdermal therapy, emphasizing the benefits and drawbacks of different approaches.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, University of Medicine and Pharmacy (VNU-UMP), Vietnam National University Hanoi, Hanoi, 100000, Vietnam
| | - Huong Thuy Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Nhat Thang Thi Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam.
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Przewodowska D, Marzec W, Madetko N. Novel Therapies for Parkinsonian Syndromes-Recent Progress and Future Perspectives. Front Mol Neurosci 2021; 14:720220. [PMID: 34512258 PMCID: PMC8427499 DOI: 10.3389/fnmol.2021.720220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Atypical parkinsonian syndromes are rare, fatal neurodegenerative diseases associated with abnormal protein accumulation in the brain. Examples of these syndromes include progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. A common clinical feature in parkinsonism is a limited improvement with levodopa. So far, there are no disease-modifying treatments to address these conditions, and therapy is only limited to the alleviation of symptoms. Diagnosis is devastating for patients, as prognosis is extremely poor, and the disease tends to progress rapidly. Currently, potential causes and neuropathological mechanisms involved in these diseases are being widely investigated. Objectives: The goal of this review is to summarize recent advances and gather emerging disease-modifying therapies that could slow the progression of atypical parkinsonian syndromes. Methods: PubMed and Google Scholar databases were searched regarding novel perspectives for atypical parkinsonism treatment. The following medical subject headings were used: "atypical parkinsonian syndromes-therapy," "treatment of atypical parkinsonian syndromes," "atypical parkinsonian syndromes-clinical trial," "therapy of tauopathy," "alpha-synucleinopathy treatment," "PSP therapy/treatment," "CBD therapy/treatment," "MSA therapy/treatment," and "atypical parkinsonian syndromes-disease modifying." All search results were manually reviewed prior to inclusion in this review. Results: Neuroinflammation, mitochondrial dysfunction, microglia activation, proteasomal impairment, and oxidative stress play a role in the neurodegenerative process. Ongoing studies and clinical trials target these components in order to suppress toxic protein accumulation. Various approaches such as stem cell therapy, anti-aggregation/anti-phosphorylation agent administration, or usage of active and passive immunization appear to have promising results. Conclusion: Presently, disease-modifying strategies for atypical parkinsonian syndromes are being actively explored, with encouraging preliminary results. This leads to an assumption that developing accurate, safe, and progression-halting treatment is not far off. Nevertheless, the further investigation remains necessary.
Collapse
Affiliation(s)
- Dominika Przewodowska
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Marzec
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Bluett B, Pantelyat AY, Litvan I, Ali F, Apetauerova D, Bega D, Bloom L, Bower J, Boxer AL, Dale ML, Dhall R, Duquette A, Fernandez HH, Fleisher JE, Grossman M, Howell M, Kerwin DR, Leegwater-Kim J, Lepage C, Ljubenkov PA, Mancini M, McFarland NR, Moretti P, Myrick E, Patel P, Plummer LS, Rodriguez-Porcel F, Rojas J, Sidiropoulos C, Sklerov M, Sokol LL, Tuite PJ, VandeVrede L, Wilhelm J, Wills AMA, Xie T, Golbe LI. Best Practices in the Clinical Management of Progressive Supranuclear Palsy and Corticobasal Syndrome: A Consensus Statement of the CurePSP Centers of Care. Front Neurol 2021; 12:694872. [PMID: 34276544 PMCID: PMC8284317 DOI: 10.3389/fneur.2021.694872] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS; the most common phenotype of corticobasal degeneration) are tauopathies with a relentless course, usually starting in the mid-60s and leading to death after an average of 7 years. There is as yet no specific or disease-modifying treatment. Clinical deficits in PSP are numerous, involve the entire neuraxis, and present as several discrete phenotypes. They center on rigidity, bradykinesia, postural instability, gait freezing, supranuclear ocular motor impairment, dysarthria, dysphagia, incontinence, sleep disorders, frontal cognitive dysfunction, and a variety of behavioral changes. CBS presents with prominent and usually asymmetric dystonia, apraxia, myoclonus, pyramidal signs, and cortical sensory loss. The symptoms and deficits of PSP and CBS are amenable to a variety of treatment strategies but most physicians, including many neurologists, are reluctant to care for patients with these conditions because of unfamiliarity with their multiplicity of interacting symptoms and deficits. CurePSP, the organization devoted to support, research, and education for PSP and CBS, created its CurePSP Centers of Care network in North America in 2017 to improve patient access to clinical expertise and develop collaborations. The directors of the 25 centers have created this consensus document outlining best practices in the management of PSP and CBS. They formed a writing committee for each of 12 sub-topics. A 4-member Steering Committee collated and edited the contributions. The result was returned to the entire cohort of authors for further comments, which were considered for incorporation by the Steering Committee. The authors hope that this publication will serve as a convenient guide for all clinicians caring for patients with PSP and CBS and that it will improve care for patients with these devastating but manageable disorders.
Collapse
Affiliation(s)
- Brent Bluett
- Neurology, Pacific Central Coast Health Center, Dignity Health, San Luis Obispo, CA, United States
- Neurology, Stanford University, Stanford, CA, United States
| | - Alexander Y. Pantelyat
- Neurology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Irene Litvan
- Neurology, University of California, San Diego, San Diego, CA, United States
| | - Farwa Ali
- Neurology, Mayo Clinic, Rochester, MN, United States
| | - Diana Apetauerova
- Neurology, Lahey Hospital and Medical Center, Burlington, MA, United States
| | - Danny Bega
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lisa Bloom
- Neurology, Surgery, University of Chicago, Chicago, IL, United States
| | - James Bower
- Neurology, Mayo Clinic, Rochester, MN, United States
| | - Adam L. Boxer
- Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marian L. Dale
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Rohit Dhall
- Neurology, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Antoine Duquette
- Service de Neurologie, Département de Médecine, Unité de Troubles du Mouvement André-Barbeau, Centre Hospitalier de l'Université de Service de Neurologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Hubert H. Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jori E. Fleisher
- Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, United States
| | - Murray Grossman
- Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Howell
- Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Diana R. Kerwin
- Geriatrics, Presbyterian Hospital of Dallas, Dallas, TX, United States
| | | | - Christiane Lepage
- Service de Neurologie, Département de Médecine, Unité de Troubles du Mouvement André-Barbeau, Centre Hospitalier de l'Université de Service de Neurologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | | | - Martina Mancini
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Nikolaus R. McFarland
- Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Paolo Moretti
- Neurology, The University of Utah, Salt Lake City, UT, United States
| | - Erica Myrick
- Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, United States
| | - Pritika Patel
- Neurology, Lahey Hospital and Medical Center, Burlington, MA, United States
| | - Laura S. Plummer
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Julio Rojas
- Neurology, University of California, San Francisco, San Francisco, CA, United States
| | | | - Miriam Sklerov
- Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leonard L. Sokol
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Paul J. Tuite
- Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Lawren VandeVrede
- Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer Wilhelm
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Anne-Marie A. Wills
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Tao Xie
- Neurology, Surgery, University of Chicago, Chicago, IL, United States
| | - Lawrence I. Golbe
- Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
6
|
Bensmann W, Zink N, Arning L, Beste C, Stock AK. The Presynaptic Regulation of Dopamine and Norepinephrine Synthesis Has Dissociable Effects on Different Kinds of Cognitive Conflicts. Mol Neurobiol 2019; 56:8087-8100. [PMID: 31183808 DOI: 10.1007/s12035-019-01664-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Goal-directed behavior requires the ability to resolve subliminally or consciously induced response conflicts, both of which may benefit from catecholamine-induced increases in gain control. We investigated the effects of presynaptic differences in dopamine and norepinephrine synthesis with the help of the tyrosine hydroxylase (TH) rs10770141 and the dopamine-β-hydroxylase (DBH) rs1611115, rs6271, and rs1611122 polymorphisms. Conscious and subliminal response conflicts were induced with flanker and prime distractors in (n = 207) healthy young participants while neurophysiological data (EEG) was recorded. The results demonstrated that the increased presynaptic catecholamine synthesis associated with the TH rs10770141 TT genotype improves cognitive control in case of consciously perceived (flanker) conflicts, but not in case of subliminally processed (prime) conflicts. Only norepinephrine seemed to also modulate subliminal conflict processing, as evidenced by better performance of the DBH rs1611122 CC genotype in case of high subliminal conflict load. Better performance was linked to larger conflict-induced modulations in post-response alpha band power arising from parietal and inferior frontal regions, which likely helps to suppress the processing of distracting information. In summary, presynaptic catecholamine synthesis benefits consciously perceived conflicts by improving the suppression of distracting information following a conflict. Subliminal conflicts were modulated via the same mechanism, but only by norepinephrine.
Collapse
Affiliation(s)
- Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|