1
|
Güven SG, Erdoğan H, Arslan M, Ersoy O, Bulut E, Çilingir Kaya ÖT, Şirvancı S, Uzun C. The Effects of Memantine on Cisplatin-Induced Ototoxicity. Audiol Neurootol 2024:1-15. [PMID: 39522503 DOI: 10.1159/000542496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION We aimed to investigate electrophysiologically and histopathologically, the protective effects of intratympanic memantine, an N-methyl-D-aspartate receptor antagonist, on ototoxicity caused by cisplatin, an anti-neoplastic agent used in many types of cancer. METHODS Thirty-seven guinea pigs with a normal auditory function were randomly allocated to group 1 (cisplatin; n = 8), group 2 (memantine; n = 8), group 3 (cisplatin + memantine; n = 8), group 4 (cisplatin + physiological serum [PS]; n = 8), and group 5 (control; n = 5). Auditory assessments were conducted using distortion product otoacoustic emissions (DPOAE) within a frequency range of 1-32 kHz and auditory brainstem responses (ABRs) within 8-32 kHz. A single dose of cisplatin (12 mg/kg) was administered intraperitoneally, followed by intratympanic administration of 0.2 mL of either memantine or PS to both ears at least half an hour before cisplatin administration. Subsequent auditory evaluations were conducted 72 h after cisplatin administration. Histopathological analyses were performed using light microscopy of the right ear and scanning electron microscopy (SEM) of the left ear. RESULTS Auditory evaluations conducted before and after treatment revealed significant findings. Specifically, within groups 3 and 4, ABR thresholds were elevated at all frequencies (p = 0.00), whereas the DPOAE signal-to-noise ratios were reduced at frequencies of 8, 12, 16, and 24 kHz (p = 0.001, p = 0.01, p = 0.01, and p = 0.00, respectively). Histopathologically, both light microscopy and SEM revealed that the cisplatin + memantine group exhibited fewer hair cells and nuclear degeneration in the spiral ganglion than the cisplatin and cisplatin + PS groups. Additionally, the stria vascularis thickness was greater in the cisplatin + memantine group than in cisplatin and cisplatin + PS groups. CONCLUSION Despite the negative electrophysiological findings, the histopathological outcomes suggest that intratympanic memantine may have a potential protective effect against cisplatin-induced ototoxicity. However, further investigations are warranted to corroborate these findings and elucidate the underlying mechanisms of action of memantine.
Collapse
Affiliation(s)
- Selis Gülseven Güven
- Department of Otorhinolaryngology, Head and Neck Surgery, Trakya University Faculty of Medicine, Edirne, Turkey
- Mirko Tos Ear and Hearing Research Center, Trakya University, Edirne, Turkey
| | - Hilal Erdoğan
- Department of Otorhinolaryngology, Head and Neck Surgery, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Murat Arslan
- Mirko Tos Ear and Hearing Research Center, Trakya University, Edirne, Turkey
- Department of Audiology, Trakya University Faculty of Health Sciences, Edirne, Turkey
| | - Onur Ersoy
- Mirko Tos Ear and Hearing Research Center, Trakya University, Edirne, Turkey
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Trakya University, Edirne, Turkey
| | - Erdoğan Bulut
- Mirko Tos Ear and Hearing Research Center, Trakya University, Edirne, Turkey
- Department of Audiology, Trakya University Faculty of Health Sciences, Edirne, Turkey
| | | | - Serap Şirvancı
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Cem Uzun
- Department of Otorhinolaryngology, Head and Neck Surgery, Koç University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Pușcașu C, Chiriță C, Negreș S, Blebea NM. Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management. Int J Mol Sci 2024; 25:11111. [PMID: 39456894 PMCID: PMC11507561 DOI: 10.3390/ijms252011111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Neuropathic pain (NeP) is a complex and debilitating condition that impacts millions of people globally. Although various treatment options exist, their effectiveness is often limited, and they can be accompanied by significant side effects. In recent years, there has been increasing interest in targeting the N-methyl-D-aspartate receptor (NMDAR) as a potential therapeutic approach to alleviate different types of neuropathic pain. This narrative review aims to provide a comprehensive examination of NMDAR antagonists, specifically ketamine, memantine, methadone, amantadine, carbamazepine, valproic acid, phenytoin, dextromethorphan, riluzole, and levorphanol, in the management of NeP. By analyzing and summarizing current preclinical and clinical studies, this review seeks to evaluate the efficacy of these pharmacologic agents in providing adequate relief for NeP.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Cornel Chiriță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Simona Negreș
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Nicoleta Mirela Blebea
- Faculty of Pharmacy, “Ovidius” University of Constanța, Căpitan Aviator Al. Şerbănescu 6, 900470 Constanța, Romania;
| |
Collapse
|
3
|
Choi SJ, Lee SJ, Lee D, Im GJ, Jung HH, Lee SU, Park E. Protective Effect of Memantine on Cisplatin-Induced Ototoxicity: An In Vitro Study. Otol Neurotol 2024; 45:998-1005. [PMID: 39186064 DOI: 10.1097/mao.0000000000004317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
HYPOTHESIS Memantine, an N -methyl- d -aspartate receptor antagonist, is widely used to treat Alzheimer's disease and has been found to have potential neuroprotective effects. In this study, we evaluated the protective effects of memantine against cisplatin-induced ototoxicity. BACKGROUND Cisplatin is a widely used anticancer drug for various cancers; however, its use is limited by its side effects, including ototoxicity. Several drugs have been developed to reduce cisplatin toxicity. In this study, we treated cisplatin-damaged cochlear hair cells with memantine and evaluated its protective effects. METHOD House Ear Institute Organ of Corti 1 (HEI-OC1) cells and cochlear explants were treated with cisplatin or memantine. Cell viability, apoptotic patterns, reactive oxygen species (ROS) production, Bcl-2/caspase-3 activity, and cell numbers were measured to evaluate the anti-apoptotic and antioxidative effects of memantine. RESULT Memantine treatment significantly improved cell viability and reduced cisplatin-induced apoptosis in auditory cells. Bcl-2/caspase-3 activity was also significantly increased, suggesting anti-apoptotic effects against cisplatin-induced ototoxicity. CONCLUSION Our results suggest that memantine protects against cisplatin-induced ototoxicity in vitro, providing a potential new strategy for preventing hearing loss in patients undergoing cisplatin chemotherapy.
Collapse
Affiliation(s)
- Soo Jeong Choi
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Lee
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dabin Lee
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gi Jung Im
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hak Hyun Jung
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
4
|
Brain Protection by Methylene Blue and Its Derivative, Azur B, via Activation of the Nrf2/ARE Pathway in Cisplatin-Induced Cognitive Impairment. Pharmaceuticals (Basel) 2022; 15:ph15070815. [PMID: 35890114 PMCID: PMC9320109 DOI: 10.3390/ph15070815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a cytotoxic chemotherapeutic drug that leads to DNA damage and is used in the treatment of various types of tumors. However, cisplatin has several serious adverse effects, such as deterioration in cognitive ability. The aim of our work was to study neuroprotectors capable of preventing cisplatin-induced neurotoxicity. Methylene blue (MB) and AzurB (AzB) are able to neutralize the neurotoxicity caused by cisplatin by protecting nerve cells as a result of the activation of the Ntf2 signaling pathway. We have shown that cisplatin impairs learning in the Morris water maze. This is due to an increase in the amount of mtDNA damage, a decrease in the expression of most antioxidant genes, the main determinant of the induction of which is the Nrf2/ARE signaling pathway, and genes involved in mitophagy regulation in the cortex. The expression of genes involved in long-term potentiation was suppressed in the hippocampus of cisplatin-injected mice. MB in most cases prevented cisplatin-induced impairment of learning and decrease of gene expression in the cortex. AzB prevented the cisplatin-induced decrease of genes in the hippocampus. Also, cisplatin induced disbalance in the gut microbiome, decreased levels of Actinotalea and Prevotella, and increased levels of Streptococcus and Veillonella. MB and AzB also prevented cisplatin-induced changes in the bacterial composition of the gut microbiome.
Collapse
|
5
|
Eroglu E, Unel CC, Harmanci N, Erol K, Ari NS, Ozatik O. 2-Aminoethoxydiphenyl borate ameliorates functional and structural abnormalities in cisplatin-induced peripheral neuropathy. J Trace Elem Med Biol 2022; 70:126909. [PMID: 34902678 DOI: 10.1016/j.jtemb.2021.126909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022]
Abstract
AIM OF THE STUDY Cisplatin is a platinum-derived chemotherapeutic agent commonly used in the treatment of various tumors. Ototoxicity, nephrotoxicity, and peripheral neuropathy are the most common side effects of this drug. 2-Aminoethoxydiphenyl borate (2-APB), boron- containing compound, has some protective effects against various tissue damage. The present study aimed to investigate the potential protective effects of 2-APB on in vitro and in vivo cisplatin-induced neurotoxicity. MATERIALS AND METHODS MTT assay was used to determine cell viability in DRG cells. Peripheral neuropathy was induced in forty male Sprague-Dawley rats (200-250g) by administering cisplatin (3 mg/kg/week) intraperitoneally (i.p) for five weeks. 2-APB (2, 4, and 8 mg/kg, i.p) was administered. Mechanical allodynia, thermal hyperalgesia, cold allodynia, mechanical stimuli, motor coordination, and locomotor activity tests were performed. DRG cells and sciatic nerves were analyzed histologically. NGF, BDNF, TNF-α, GSH, MDA, and LDH levels were investigated in rat DRG tissue homogenates. RESULTS Our results revealed that 2-APB ameliorated cisplatin-induced neurotoxicity by improving mechanical and cold allodynia and motor coordination impairment. It also reduced cisplatin-induced structural toxicity in peripheral tissues. CONCLUSION These findings demonstrated that 2-APB could be considered as a potential therapeutic strategy for the treatment of cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Ezgi Eroglu
- Department of Pharmacology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey; Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nusin Harmanci
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Kevser Erol
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey; Department of Medical Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Neziha Senem Ari
- Department of Histology and Embryology, Evliya Celebi Education and Research Hospital, Kutahya Health Sciences University, Kutahya, Turkey
| | - Orhan Ozatik
- Department of Histology and Embryology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
6
|
Huang Y, Liu C, Song X, An M, Liu M, Yao L, Famurewa AC, Olatunji OJ. Antioxidant and Anti-inflammatory Properties Mediate the Neuroprotective Effects of Hydro-ethanolic Extract of Tiliacora triandra Against Cisplatin-induced Neurotoxicity. J Inflamm Res 2021; 14:6735-6748. [PMID: 34916822 PMCID: PMC8668253 DOI: 10.2147/jir.s340176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cisplatin (CDDP) is an efficacious anticancer agent used widely in chemotherapy despite its severe side effect related to neurotoxicity. Redox imbalance and inflammatory mechanism have been implicated in the pathophysiology of CDDP-induced neurotoxicity. Herein, we investigated whether Tiliacora triandra (TT) extract could inhibit CDDP-induced redox-mediated neurotoxicity and behavioural deficit in rats. Materials and Methods CDDP-induced redox-mediated neurotoxicity and behavioral deficit in rats. Rats were administered TT for five consecutive weeks (250 and 500 mg/kg bw), while weekly i.p. injection of CDDP commenced on the second week (2.5 mg/kg bw) of the TT administration. Results CCDDP caused significant body weight reduction and cognitive diminution as revealed by Morris water maze and Y maze tests. In the CDDP-induced cognitive impairment (CICI) rats, there were remarkable increases in the brain levels of TNF-α, IL-6 and IL-1β and malondialdehyde (MDA), whereas catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities considerably decreased compared to normal control. The brain acetylcholinesterase (AChE) activity in CDDP control rats was significantly increased compared to the normal control. The expression of caspase-3 and p53 proteins was upregulated by CDDP injection, whereas Bcl2 was downregulated coupled with histopathological alterations in the rat brain. Interestingly, treatment with TT significantly abated neurobehavioral deficits, MDA and cytokine levels and restored CAT, GPx, GSH, SOD, and AChE activities compared to the CDDP control rats. Caspase-3 level as well as Bcl2 and p53 expressions were modulated with alleviated changes in histopathology. Conclusion The findings highlight neuroprotective and cognitive function improvement efficacy of TT against CICI via redox-inflammatory balance and antiapoptotic mechanism in rats.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Chunhong Liu
- Second Peoples Hospital of Wuhu City, Wuhu, 241001, Anhui, People's Republic of China
| | - Xianbing Song
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Mei An
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Meimei Liu
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Lei Yao
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Ebonyi State, Nigeria
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
7
|
Mokhtar HEL, Hulail MAE, Mahmoud SM, Yousef DM. Impact of cisplatin administration on cerebellar cortical structure and locomotor activity of infantile and juvenile albino rats: the role of oxidative stress. Anat Sci Int 2021; 97:30-47. [PMID: 34386931 DOI: 10.1007/s12565-021-00624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
The central neurotoxicity of cisplatin (CisPt) has always raised questions especially during development, but few studies are available. Hence, this work was designed to assess the CisPt's impacts on the postnatal rat cerebellum via evaluation of locomotor activity, histological and immunohistochemical studies, and to focus on cerebellar oxidative stress-related alterations. Eighty newborn pups were divided into 2 equal experimental groups: the control group was kept without any treatment and CisPt-treated group received a single subcutaneous injection of CisPt (5 μg /g b.w.) in their nape at PD10. Ten rats at PD11, PD17, and PD30 ages were weighed, then deeply anesthetized and sacrificed. For locomotor assessment, 20 pups were divided equally into control and CisPt-treated groups and tested at PD11-13, PD15-17, and PD28-30 ages. CisPt-treated rats suffered from decreased motor activity and showed decreased body and cerebellar weights, reduced levels of enzymatic antioxidants (SOD and CAT), and non-enzymatic antioxidant defense (GSH), and increase of lipid peroxidation marker (MDA). Histopathologically, CisPt sowed deleterious changes within cerebellar cortical layers in the form of vacuolations, decreased thickness, and hemorrhage (in PD17), while Purkinje cells exhibited profound degenerative changes in the form of swelling, disrupted arrangement, distortion, and nuclear shrinkage. In CisPt-treated rats, GFAP demonstrated upregulated, hypertrophied, and branched Bergmann glial fibers and reactive astrogliosis. Immuno-localization of Ki-67-positive cells revealed defective migration associated with decreased proliferation in early ages in addition to glial proliferation in PD30. In conclusion, CisPt causes oxidative stress-related deleterious effects on structure of developing cerebellar cortex and affects locomotor activity.
Collapse
Affiliation(s)
- Hanan E L Mokhtar
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohey A E Hulail
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar Mortada Mahmoud
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Doaa Mohammed Yousef
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|