1
|
Zhao B, Jiang Q, Lin J, Wei Q, Li C, Hou Y, Cao B, Zhang L, Ou R, Liu K, Yang T, Xiao Y, Shang H. TBK1 variants in Chinese patients with amyotrophic lateral sclerosis: Genetic analysis and clinical features. Eur J Neurol 2023; 30:3079-3089. [PMID: 37422901 DOI: 10.1111/ene.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/09/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Haploinsufficiency of TANK-binding kinase 1 (TBK1) loss-of-function (LoF) variants has been shown to be pathogenic in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the genetic spectrum of TBK1 and clinical features of ALS patients with TBK1 variants remain largely unknown in Asians. METHODS Genetic analysis was performed on 2011 Chinese ALS patients. Software was used to predict the deleteriousness of missense variants in TBK1. In addition, PubMed, Embase and Web of Science were searched for related literature. RESULTS Twenty-six TBK1 variants were identified in 33 of 2011 ALS patients, including six novel LoF variants (0.3%) and 20 rare missense variants, 12 of which were predicted to be deleterious (0.6%). In addition to TBK1 variants, 11 patients had other ALS-related gene variants. Forty-two previous studies found that the frequency of TBK1 variants was 1.81% in ALS/FTD patients. The frequency of TBK1 LoF variants in ALS was 0.5% (Asians 0.4%; Caucasian 0.6%) and that of missense variants was 0.8% (Asians 1.0%; Caucasian 0.8%). ALS patients with TBK1 LoF variants affecting the kinase domain had a significantly younger age of onset than patients carrying LoF variants affecting the coiled coil domains CCD1 and CCD2. FTD has a frequency of 10% in Caucasian ALS patients with TBK1 LoF variants, which was not found in our cohort. CONCLUSION Our study expanded the genotypic spectrum of ALS patients with TBK1 variants and found that the clinical manifestations of TBK1 carriers are diverse.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Pfeffer G, Lee G, Pontifex CS, Fanganiello RD, Peck A, Weihl CC, Kimonis V. Multisystem Proteinopathy Due to VCP Mutations: A Review of Clinical Heterogeneity and Genetic Diagnosis. Genes (Basel) 2022; 13:963. [PMID: 35741724 PMCID: PMC9222868 DOI: 10.3390/genes13060963] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
In this work, we review clinical features and genetic diagnosis of diseases caused by mutations in the gene encoding valosin-containing protein (VCP/p97), the functionally diverse AAA-ATPase. VCP is crucial to a multitude of cellular functions including protein quality control, stress granule formation and clearance, and genomic integrity functions, among others. Pathogenic mutations in VCP cause multisystem proteinopathy (VCP-MSP), an autosomal dominant, adult-onset disorder causing dysfunction in several tissue types. It can result in complex neurodegenerative conditions including inclusion body myopathy, frontotemporal dementia, amyotrophic lateral sclerosis, or combinations of these. There is also an association with other neurodegenerative phenotypes such as Alzheimer-type dementia and Parkinsonism. Non-neurological presentations include Paget disease of bone and may also include cardiac dysfunction. We provide a detailed discussion of genotype-phenotype correlations, recommendations for genetic diagnosis, and genetic counselling implications of VCP-MSP.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grace Lee
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California Irvine Medical Center, Orange, CA 92868, USA; (G.L.); (V.K.)
| | - Carly S. Pontifex
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Roberto D. Fanganiello
- Oral Ecology Research Group, Faculty of Dental Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Allison Peck
- Cure VCP Disease, Inc., Americus, GA 31709, USA;
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Virginia Kimonis
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California Irvine Medical Center, Orange, CA 92868, USA; (G.L.); (V.K.)
| |
Collapse
|
3
|
Feng SY, Lin H, Che CH, Huang HP, Liu CY, Zou ZY. Phenotype of VCP Mutations in Chinese Amyotrophic Lateral Sclerosis Patients. Front Neurol 2022; 13:790082. [PMID: 35197922 PMCID: PMC8858817 DOI: 10.3389/fneur.2022.790082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the valosin-containing protein (VCP) gene have been linked to amyotrophic lateral sclerosis (ALS) in the Caucasian populations. However, the phenotype of VCP mutations in Chinese patients with (ALS) remains unclear. Targeted next-generation sequencing covered 28 ALS-related genes including the VCP gene was undertaken to screen in a Chinese cohort of 275 sporadic ALS cases and 15 familial ALS pedigrees. An extensive literature review was performed to identify all patients with ALS carrying VCP mutations previously reported. The clinical characteristics and genetic features of ALS patients with VCP mutations were reviewed. One known p.R155C mutation in the VCP gene was detected in two siblings from a familial ALS pedigree and two sporadic individuals. In addition, the same VCP p.R155C mutation was detected in an additional patient with ALS referred in 2021. Three patients with VCP p.R155C mutation presented with muscular weakness starting from proximal extremities to distal extremities. The other patient developed a phenotype of Paget's disease of bone in addition to the progressive muscular atrophy. We reported the first VCP mutation carrier manifesting ALS with Paget's disease of bone in the Chinese population. Our findings expand the phenotypic spectrum of the VCP mutations in Chinese patients with ALS and suggest that ALS patients with VCP p.R155C mutations tend to present with relatively young onset, symmetrical involvement of proximal muscles weakness of arms or legs, and then progressed to distal muscles of limbs.
Collapse
Affiliation(s)
- Shu-Yan Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, China
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhang-Yu Zou
| |
Collapse
|
4
|
Matsubara T, Izumi Y, Oda M, Takahashi M, Maruyama H, Miyamoto R, Watanabe C, Tachiyama Y, Morino H, Kawakami H, Saito Y, Murayama S. An autopsy report of a familial amyotrophic lateral sclerosis case carrying VCP Arg487His mutation with a unique TDP-43 proteinopathy. Neuropathology 2021; 41:118-126. [PMID: 33415820 DOI: 10.1111/neup.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
We here report an autopsy case of familial amyotrophic lateral sclerosis (ALS) with p.Arg487His mutation in the valosin-containing protein (VCP) gene (VCP), in which upper motor neurons (UMNs) were predominantly involved. Moreover, our patient developed symptoms of frontotemporal dementia later in life and pathologically exhibited numerous phosphorylated transactivation response DNA-binding protein of 43 kDa (p-TDP-43)-positive neuronal cytoplasmic inclusions and short dystrophic neurites with a few lentiform neuronal intranuclear inclusions, sharing the features of frontotemporal lobar degeneration with TDP-43 pathology type A pattern. A review of previous reports of ALS with VCP mutations suggests that our case is unique in terms of its UMN-predominant lesion pattern and distribution of p-TDP-43 pathology. Thus, this case report effectively expands the clinical and pathological phenotype of ALS in patients with a VCP mutation.
Collapse
Affiliation(s)
- Tomoyasu Matsubara
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuishin Izumi
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaya Oda
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan
| | | | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Chigusa Watanabe
- Department of Neurology, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Yoshiro Tachiyama
- Department of Clinical Laboratory, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Molecular Research Center for Children's Mental Development (Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders), United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|