1
|
Sadhukhan D, Biswas A, Mishra S, Chatterjee K, Maji D, Mitra P, Mukherjee P, Podder G, Ray BK, Biswas A, Banerjee TK, Hui SP, Deb I. Genetic Variations and Altered Blood mRNA Level of Circadian Genes and BDNF as Risk Factors of Post-Stroke Cognitive Impairment Among Eastern Indians. Neuromolecular Med 2023; 25:586-595. [PMID: 37814155 DOI: 10.1007/s12017-023-08761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Post-stroke cognitive impairment (PSCI) is a clinical outcome in around 30% of post-stroke survivors. BDNF is a major gene in this regard. It is regulated by circadian rhythm. The circadian genes are correlated with stroke timings at molecular level. However, studies suggesting the role of these on susceptibility to PSCI are limited. We aim here to determine: (a) genetic risk variants in circadian clock genes, BDNF and (b) dysregulation in expression level of CLOCK, BMAL1, and BDNF that may be associated with PSCI. BDNF (rs6265G/A, rs56164415C/T), CLOCK (rs1801260T/C, rs4580704G/C), and CRY2 (rs2292912C/G) genes variants were genotyped among 119 post-stroke survivors and 292 controls from Eastern part of India. In addition, we analyzed their gene expression in Peripheral blood Mononuclear cells (PBMC) from 15 PSCI cases and 12 controls. The mRNA data for BDNF was further validated by its plasma level through ELISA (n = 38). Among the studied variants, only rs4580704/CLOCK showed an overall association with PSCI (P = 0.001) and lower Bengali Mini-Mental State Examination (BMSE) score. Its 'C' allele showed a correlation with attention deficiency. The language and memory impairments showed association with rs6265/BDNF, while the 'CC' genotype of rs2292912/CRY2 negatively influenced language and executive function. A significant decrease in gene expression for CLOCK and BDNF in PBMC (influenced by specific genotypes) of PSCI patients was observed than controls. Unlike Pro-BDNF, plasma-level mBDNF was also lower in them. Our results suggest the genetic variants in CLOCK, CRY2, and BDNF as risk factors for PSCI among eastern Indians. At the same time, a lowering expression of CLOCK and BDNF genes in PSCI patients than controls describes their transcriptional dysregulation as underlying mechanism for post-stroke cognitive decline.
Collapse
Affiliation(s)
- Dipanwita Sadhukhan
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India.
| | - Arindam Biswas
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Smriti Mishra
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Koustav Chatterjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Daytee Maji
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Parama Mitra
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Priyanka Mukherjee
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Gargi Podder
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Biman Kanti Ray
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Atanu Biswas
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Tapas Kumar Banerjee
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Ishani Deb
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
2
|
Lv X, Chu M, Liu Y, Jing D, Liu L, Cui Y, Wang Y, Jiang D, Song W, Yang C, Wu L. Neurofunctional Correlates of Activities of Daily Living in Patients with Posterior Cortical Atrophy. J Alzheimers Dis 2023; 93:295-305. [PMID: 36970906 DOI: 10.3233/jad-221229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Research on posterior cortical atrophy (PCA) has focused on cognitive decline, especially visual processing deficits. However, few studies have examined the impact of PCA on activities of daily living (ADL) and the neurofunctional and neuroanatomic bases of ADL. OBJECTIVE To identify brain regions associated with ADL in PCA patients. METHODS A total of 29 PCA patients, 35 typical Alzheimer's disease (tAD) patients, and 26 healthy volunteers were recruited. Each subject completed an ADL questionnaire that included basic and instrumental subscales (BADL and IADL, respectively), and underwent hybrid magnetic resonance imaging and 18F fluorodeoxyglucose positron emission tomography. Voxel-wise regression multivariable analysis was conducted to identify specific brain regions associated with ADL. RESULTS General cognitive status was similar between PCA and tAD patients; however, the former had lower total ADL scores and BADL and IADL scores. All three scores were associated with hypometabolism in bilateral parietal lobes (especially bilateral superior parietal gyri) at the whole-brain level, PCA-related hypometabolism level, and PCA-specific hypometabolism level. A cluster that included the right superior parietal gyrus showed an ADL×group interaction effect that was correlated with the total ADL score in the PCA group (r = -0.6908, p = 9.3599e-5) but not in the tAD group (r = 0.1006, p = 0.5904). There was no significant association between gray matter density and ADL scores. CONCLUSION Hypometabolism in bilateral superior parietal lobes contributes to a decline in ADL in patients with PCA and can potentially be targeted by noninvasive neuromodulatory interventions.
Collapse
Affiliation(s)
- Xuedan Lv
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Sixth Hospital, Beijing, China
| | - Donglai Jing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Rongcheng People's Hospital, Hebei, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Butts AM, Machulda MM, Martin P, Przybelski SA, Duffy JR, Graff-Radford J, Knopman DS, Petersen RC, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Temporal Cortical Thickness and Cognitive Associations among Typical and Atypical Phenotypes of Alzheimer's Disease. J Alzheimers Dis Rep 2022; 6:479-491. [PMID: 36186727 PMCID: PMC9484150 DOI: 10.3233/adr-220010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background The hippocampus and temporal lobe are atrophic in typical amnestic Alzheimer's disease (tAD) and are used as imaging biomarkers in treatment trials. However, a better understanding of how temporal structures differ across atypical AD phenotypes and relate to cognition is needed. Objective Our goal was to compare temporal lobe regions between tAD and two atypical AD phenotypes (logopenic progressive aphasia (LPA) and posterior cortical atrophy (PCA)), and assess cognitive associations. Methods We age and gender-matched 77 tAD participants to 50 LPA and 27 PCA participants, all of which were amyloid-positive. We used linear mixed-effects models to compare FreeSurfer-derived hippocampal volumes and cortical thickness of entorhinal, inferior and middle temporal, and fusiform gyri, and to assess relationships between imaging and memory, naming, and visuospatial function across and within AD phenotype. Results Hippocampal volume and entorhinal thickness were smaller bilaterally in tAD than LPA and PCA. PCA showed greater right inferior temporal and bilateral fusiform thinning and LPA showed greater left middle and inferior temporal and left fusiform thinning. Atypical AD phenotypes differed with greater right hemisphere thinning in PCA and greater left hemisphere thinning in LPA. Verbal and visual memory related most strongly to hippocampal volume; naming related to left temporal thickness; and visuospatial related to bilateral fusiform thickness. Fewer associations remained when examined within AD group. Conclusion Atypical AD phenotypes are associated with greater thinning of lateral temporal structures, with relative sparing of medial temporal lobe, compared to tAD. These findings may have implications for future clinical trials in AD.
Collapse
Affiliation(s)
- Alissa M. Butts
- Department of Neurology, Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, WI, USA,External Research Collaborator, Mayo Clinic, Rochester, MN, USA
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Division of Neuropsychology, Mayo Clinic, Rochester, MN, USA
| | - Peter Martin
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer L. Whitwell
- Department of Radiology, Mayo Clinic, Rochester, MN, USA,Correspondence to: Jennifer L. Whitwell, PhD, Professor of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA. E-mail:
| |
Collapse
|
4
|
Zhang Y, Ma M, Xie Z, Wu H, Zhang N, Shen J. Bridging the Gap Between Morphometric Similarity Mapping and Gene Transcription in Alzheimer's Disease. Front Neurosci 2021; 15:731292. [PMID: 34671240 PMCID: PMC8522649 DOI: 10.3389/fnins.2021.731292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Disruptions in brain connectivity have been widely reported in Alzheimer’s disease (AD). Morphometric similarity (MS) mapping provides a new way of estimating structural connectivity by interregional correlation of T1WI- and DTI-derived parameters within individual brains. Here, we aimed to identify AD-related MS changing patterns and genes related to the changes and further explored the molecular and cellular mechanism underlying MS changes in AD. Both 3D-T1WI and DTI data of 106 AD patients and 106 well-matched healthy elderly individuals from the ADNI database were included in our study. Cortical regions with significantly decreased MS were found in the temporal and parietal cortex, increased MS was found in the frontal cortex and variant changes were found in the occipital cortex in AD patients. Mean MS in regions with significantly changed MS was positively or negatively associated with memory function. Negative MS-related genes were significantly downregulated in AD, specifically enriched in neurons, and participated in biological processes, with the most significant term being synaptic transmission. This study revealed AD-related cortical MS changes associated with memory function. Linking gene expression to cortical MS changes may provide a possible molecular and cellular substrate for MS abnormality and cognitive decline in AD.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Ma
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhonghua Xie
- Department of Mathematics, School of Science, Tianjin University of Science and Technology, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Junlin Shen
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Biswas A, Sadhukhan D, Biswas A, Das SK, Banerjee TK, Bal PS, Pal S, Ghosh A, Ray K, Ray J. Identification of GBA mutations among neurodegenerative disease patients from eastern India. Neurosci Lett 2021; 751:135816. [PMID: 33711404 DOI: 10.1016/j.neulet.2021.135816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION GBA mutations have been reported in PD, PDD and DLB - but not associated with cognitive impairment for example in PSP, AD or MSA. However, frequencies of GBA mutations are ethnicity dependent. The present study aims to identify commonly reported GBA mutations (mostly from Asia), among eastern Indian patients with neurodegenerative disorders. METHODS The patient cohort consisting of 198 classical PD cases, 136 PD cases with cognitive impairment, 184 cases with Parkinson Plus syndrome, 46 AD and 241 unrelated controls, from eastern India. Subjects were analyzed for IVS2 + 1A > G, p.Arg120Trp, p.His255Gln, p.Arg257Gln, p.Glu326Lys, p.Asn370Ser, p.Asp409His, p.Leu444Pro, & RecNciI by PCR-RFLP techniques and confirmed by Sanger sequencing method. RESULTS We have identified only p.Leu444Pro variant among nine cases; three PDD, one DLB, two PD, two PSP and one AD patients in heterozygous condition. The highest frequency for p.Leu444Pro variant was found among PDD subgroup (3.95 %, P = 0.0134). An overall significant overrepresentation of positive family history (P = 0.000049), impaired recent memory (P = 0.0123) was observed among p.Leu444Pro carriers. Further, subgroup analysis for PD, PD-MCI and PDD, revealed statistically significant higher frequency of early age at onset (P = 0.0455), positive family history (P = 0.0025), higher UPDRS III score (off state) (P = 0.006), advanced H&Y stage (P = 0.045) and anxious behaviour (P = 0.0124) among p.Leu444Pro positive patients. CONCLUSION The p.Leu444Pro mutation of GBA was found in patients with PD, PDD, DLB, PSP and AD. An Overall higher frequency of positive family history and impaired recent memory are significantly associated with for p.Leu444Pro carriers from eastern India. Our study also ascertains contribution of p.Leu444Pro to an earlier onset of PD, PD-MCI and PDD, higher UPDRS III score (off state) against positive family history background. Furthermore, taking into consideration other Indian studies, we can conclude that p.Leu444Pro mutation plays a limited role in PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Arindam Biswas
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre, Calcutta, India; S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| | - Dipanwita Sadhukhan
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Atanu Biswas
- Institute of Post graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Shyamal K Das
- Institute of Post graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Tapas K Banerjee
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre, Calcutta, India
| | - Partha Sarathi Bal
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre, Calcutta, India
| | - Sandip Pal
- Medical College & Hospitals, Kolkata, India
| | | | - Kunal Ray
- ATGC Diagnostics Private Limited, Kolkata, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| |
Collapse
|