1
|
Sakti DH, Cornish EE, Fraser CL, Nash BM, Sandercoe TM, Jones MM, Rowe NA, Jamieson RV, Johnson AM, Grigg JR. Early recognition of CLN3 disease facilitated by visual electrophysiology and multimodal imaging. Doc Ophthalmol 2023; 146:241-256. [PMID: 36964447 PMCID: PMC10256658 DOI: 10.1007/s10633-023-09930-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/07/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Neuronal ceroid lipofuscinosis is a group of neurodegenerative disorders with varying visual dysfunction. CLN3 is a subtype which commonly presents with visual decline. Visual symptomatology can be indistinct making early diagnosis difficult. This study reports ocular biomarkers of CLN3 patients to assist clinicians in early diagnosis, disease monitoring, and future therapy. METHODS Retrospective review of 5 confirmed CLN3 patients in our eye clinic. Best corrected visual acuity (BCVA), electroretinogram (ERG), ultra-widefield (UWF) fundus photography and fundus autofluorescence (FAF), and optical coherence tomography (OCT) studies were undertaken. RESULTS Five unrelated children, 4 females and 1 male, with median age of 6.2 years (4.6-11.7) at first assessment were investigated at the clinic from 2016 to 2021. Four homozygous and one heterozygous pathogenic CLN3 variants were found. Best corrected visual acuities (BCVAs) ranged from 0.18 to 0.88 logMAR at first presentation. Electronegative ERGs were identified in all patients. Bull's eye maculopathies found in all patients. Hyper-autofluorescence ring surrounding hypo-autofluorescence fovea on FAF was found. Foveal ellipsoid zone (EZ) disruptions were found in all patients with additional inner and outer retinal microcystic changes in one patient. Neurological problems noted included autism, anxiety, motor dyspraxia, behavioural issue, and psychomotor regression. CONCLUSIONS CLN3 patients presented at median age 6.2 years with visual decline. Early onset maculopathy with an electronegative ERG and variable cognitive and motor decline should prompt further investigations including neuropaediatric evaluation and genetic assessment for CLN3 disease. The structural parameters such as EZ and FAF will facilitate ocular monitoring.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Clare L Fraser
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Genome Diagnostics, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Trent M Sandercoe
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Michael M Jones
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Neil A Rowe
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Robyn V Jamieson
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Department of Neurology, Sydney Children's Hospital, University of New South Wales, Sydney, Australia
| | - John R Grigg
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia.
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia.
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia.
| |
Collapse
|
2
|
A Novel, Apparently Silent Variant in MFSD8 Causes Neuronal Ceroid Lipofuscinosis with Marked Intrafamilial Variability. Int J Mol Sci 2022; 23:ijms23042271. [PMID: 35216386 PMCID: PMC8877174 DOI: 10.3390/ijms23042271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Variants in MFSD8 can cause neuronal ceroid lipofuscinoses (NCLs) as well as nonsyndromic retinopathy. The mutation spectrum includes mainly missense and stop variants, but splice sites and frameshift variants have also been reported. To date, apparently synonymous substitutions have not been shown to cause MFSD8-associated diseases. We report two closely related subjects from a consanguineous Turkish family who presented classical features of NCLs but demonstrated marked intrafamilial variability in age at the onset and severity of symptoms. In fact, the difference in the onset of first neurologic symptoms was 15 years and that of ophthalmologic symptoms was 12 years. One subject presented an intellectual disability and a considerable cerebellar ataxia syndrome, while the other subject showed no intellectual disability and only a mild atactic syndrome. The diagnostic genetic testing of both subjects based on genome sequencing prioritized a novel, apparently synonymous variant in MFSD8, which was found in homozygosity in both subjects. The variant was not located within an integral part of the splice site consensus sequences. However, the bioinformatic analyses suggested that the mutant allele is more likely to cause exon skipping due to an altered ratio of exonic splice enhancer and silencer motifs. Exon skipping was confirmed in vitro by minigene assays and in vivo by RNA analysis from patient lymphocytes. The mutant transcript is predicted to result in a frameshift and, if translated, in a truncated protein. Synonymous variants are often given a low priority in genetic diagnostics because of their expected lack of functional impact. This study highlights the importance of investigating the impact of synonymous variants on splicing.
Collapse
|
3
|
Novel manifestations of Warburg micro syndrome type 1 caused by a new splicing variant of RAB3GAP1: a case report. BMC Neurol 2021; 21:180. [PMID: 33910511 PMCID: PMC8080372 DOI: 10.1186/s12883-021-02204-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study aimed to determine the underlying genetic factors causing the possible Warburg micro syndrome (WARBM) phenotype in two Iranian patients. CASE PRESENTATION A 5-year-old female and a 4.5-year-old male were referred due to microcephaly, global developmental delay, and dysmorphic features. After doing neuroimaging and clinical examinations, due to the heterogeneity of neurodevelopmental disorders, we subjected 7 family members to whole-exome sequencing. Three candidate variants were confirmed by Sanger sequencing and allele frequency of each variant was also determined in 300 healthy ethnically matched people using the tetra-primer amplification refractory mutation system-PCR and PCR-restriction fragment length polymorphism. To show the splicing effects, reverse transcription-PCR (RT-PCR) and RT-qPCR were performed, followed by Sanger sequencing. A novel homozygous variant-NM_012233.2: c.151-5 T > G; p.(Gly51IlefsTer15)-in the RAB3GAP1 gene was identified as the most likely disease-causing variant. RT-PCR/RT-qPCR showed that this variant can activate a cryptic site of splicing in intron 3, changing the splicing and gene expression processes. We also identified some novel manifestations in association with WARBM type 1 to touch upon abnormal philtrum, prominent antitragus, downturned corners of the mouth, malaligned teeth, scrotal hypoplasia, low anterior hairline, hypertrichosis of upper back, spastic diplegia to quadriplegia, and cerebral white matter signal changes. CONCLUSIONS Due to the common phenotypes between WARBMs and Martsolf syndrome (MIM: 212720), we suggest using the "RABopathies" term that can in turn cover a broad range of manifestations. This study can per se increase the genotype-phenotype spectrum of WARBM type 1.
Collapse
|