1
|
Li CX, Sun LC, Wang YQ, Liu TT, Cai JR, Liu H, Ren Z, Yi Z. The associations of candidate gene polymorphisms with aspirin resistance in patients with ischemic disease: a meta-analysis. Hum Genomics 2024; 18:135. [PMID: 39617913 PMCID: PMC11610159 DOI: 10.1186/s40246-024-00699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Recently, extensive research has been conducted on the relationship between aspirin gene polymorphisms and aspirin resistance (AR) in patients with ischemic diseases. Among the numerous candidate genes, it remains unclear which ones are significantly associated with AR and could potentially serve as potential biomarkers for genetic testing before aspirin use. METHODS Eligible articles were searched in PubMed, Embase, Cochrane Library, WanFang, CNKI and Sinomed. A cohort study examining the efficacy of aspirin in secondary prevention for patients with ischemic diseases, along with a discussion on genetic polymorphisms and their association with AR, has been included. The Newcastle-Ottawa Scale for assessing the quality of included studies. Odds ratios (OR) with 95% confidence intervals (CI) were used as measures of effect. Subgroup analyses were conducted based on different genotypes with the same genetic polymorphisms, different research regions and types of ischemic diseases. RESULTS From 75 eligible articles, 94 candidate gene polymorphisms were analyzed. In the overall analysis, 25 genes were subjected to meta-analysis and 69 genes were systematically described. 23 gene polymorphisms were observed to be significantly associated with AR, including PTGS2(rs20417) (OR = 0.57, 95% CI: 0.44-0.73), ITGA2(rs1126643) (OR = 0.52, 95% CI: 0.29-0.93), and TbXA2R(rs1131882) (OR = 1.54, 95% CI: 1.09-2.18) were obtained from the combined analysis of this study, and 20 genes were systematically described in this study. Further subgroup analyses demonstrated that AA genotype for PTGS1(rs1330344) (OR = 0.56, 95%CI:0.43-0.74), C allele for PTGS1(rs5788) (OR = 0.51, 95%CI: 0.30-0.87) polymorphisms were significantly associated with AR. The polymorphisms of 13 genes, including PTGS1(rs1236913), have been studied only in Asia, GP6(rs1613662) has been studied only in Europe, and the polymorphisms of 5 genes, including ABCB1(rs1045642), showed different correlations with AR in various regions. The individuals with the PTGS1 (rs5788) variant who experienced an ischemic stroke (OR = 0.98, 95%CI: 0.54-1.67) may exhibit an elevated risk of AR compared to those with coronary artery disease (OR = 0.51, 95%CI: 0.3-0.87). CONCLUSIONS Our meta-analysis indicates that PTGS2(rs20417), ITGA2(rs1126643), and TbXA2R(rs1131882) could be potential genetic biomarkers for AR. Among these, PTGS2 (rs20417) is particularly suggested for individuals in Asia with ischemic diseases before aspirin use, as the GC/CC genotype raises AR risk by 42% compared to GG. ITGA2 (rs1126643) increases AR risk by 48% in Asia with the TC/TC genotype versus CC. However, results for ABCB1(rs1045642) and GP1BA(rs2243093) vary by regions, requiring further research.
Collapse
Affiliation(s)
- Chun-Xing Li
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China.
| | - Li-Chaoyue Sun
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yu-Qiao Wang
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Tian-Tian Liu
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Jin-Rui Cai
- Beijing Haidian District WanShouLu Community Health Service Center, Beijing, China
| | - Hua Liu
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Zhao Ren
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Zhanmiao Yi
- Department of Pharmacy, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, China.
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Santos M, Lima L, Carvalho S, Brandão A, Barroso F, Cruz A, Medeiros R. ABCB1 C1236T, G2677TA and C3435T Genetic Polymorphisms and Antidepressant Response Phenotypes: Results from a Portuguese Major Depressive Disorder Cohort. Int J Mol Sci 2024; 25:5112. [PMID: 38791151 PMCID: PMC11120659 DOI: 10.3390/ijms25105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
P-glycoprotein (P-GP) is a transporter molecule expressed on the apical surface of capillary endothelial cells of the Blood-Brain Barrier (BBB), whose activity heavily influences drug distribution, including antidepressants. This transporter is encoded by ABCB1 gene, and genetic variations within ABCB1 gene have been proposed to affect drug efflux and have been previously associated with depression. In this context, we aimed to evaluate the role of C1236T, G2677TA and C3435T ABCB1 genetic polymorphisms in antidepressant treatment phenotypes from a cohort of patients harboring Major Depressive Disorder. Patients enrolled in the study consisted of 80 individuals with Major Depressive Disorder, who took part in a 27-month follow-up study at HML, Portugal. To investigate the correlation between ABCB1 polymorphisms and antidepressant response phenotypes, DNA was extracted from peripheral blood, and C1236T, C3435T and G2677TA polymorphisms were genotyped with TaqMan® SNP Genotyping Assays. Despite the fact that the evaluated polymorphisms (C1236T, C3435T and G2677TA) were not associated with treatment resistant depression, or relapse, we observed that patients carrying TT genotype of the C3435T polymorphism remit earlier than the ones carrying CC or CT genotypes (10.2 weeks vs. 14.9 and 21.3, respectively, p = 0.028, Log-rank test). Since we found an association with C3435T and time to remission, and not to the absence of remission, we suggest that this polymorphism could have an impact on antidepressant drug distribution, and thus influence on the time to remission will occur, without influencing the risk of remission itself.
Collapse
Affiliation(s)
- Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (M.S.); (A.C.)
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Luis Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal;
| | - Serafim Carvalho
- Hospital de Magalhães Lemos, Centro Hospitalar Universitário de Santo António, 4149-003 Porto, Portugal;
- Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Andreia Brandão
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Agostinho Cruz
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (M.S.); (A.C.)
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
3
|
Renaud D, Höller A, Michel M. Potential Drug-Nutrient Interactions of 45 Vitamins, Minerals, Trace Elements, and Associated Dietary Compounds with Acetylsalicylic Acid and Warfarin-A Review of the Literature. Nutrients 2024; 16:950. [PMID: 38612984 PMCID: PMC11013948 DOI: 10.3390/nu16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In cardiology, acetylsalicylic acid (ASA) and warfarin are among the most commonly used prophylactic therapies against thromboembolic events. Drug-drug interactions are generally well-known. Less known are the drug-nutrient interactions (DNIs), impeding drug absorption and altering micronutritional status. ASA and warfarin might influence the micronutritional status of patients through different mechanisms such as binding or modification of binding properties of ligands, absorption, transport, cellular use or concentration, or excretion. Our article reviews the drug-nutrient interactions that alter micronutritional status. Some of these mechanisms could be investigated with the aim to potentiate the drug effects. DNIs are seen occasionally in ASA and warfarin and could be managed through simple strategies such as risk stratification of DNIs on an individual patient basis; micronutritional status assessment as part of the medical history; extensive use of the drug-interaction probability scale to reference little-known interactions, and application of a personal, predictive, and preventive medical model using omics.
Collapse
Affiliation(s)
- David Renaud
- DIU MAPS, Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- DIU MAPS, Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Alexander Höller
- Department of Nutrition and Dietetics, University Hospital Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Smith DA, Sadler MC, Altman RB. Promises and challenges in pharmacoepigenetics. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e18. [PMID: 37560024 PMCID: PMC10406571 DOI: 10.1017/pcm.2023.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 08/11/2023]
Abstract
Pharmacogenetics, the study of how interindividual genetic differences affect drug response, does not explain all observed heritable variance in drug response. Epigenetic mechanisms, such as DNA methylation, and histone acetylation may account for some of the unexplained variances. Epigenetic mechanisms modulate gene expression and can be suitable drug targets and can impact the action of nonepigenetic drugs. Pharmacoepigenetics is the field that studies the relationship between epigenetic variability and drug response. Much of this research focuses on compounds targeting epigenetic mechanisms, called epigenetic drugs, which are used to treat cancers, immune disorders, and other diseases. Several studies also suggest an epigenetic role in classical drug response; however, we know little about this area. The amount of information correlating epigenetic biomarkers to molecular datasets has recently expanded due to technological advances, and novel computational approaches have emerged to better identify and predict epigenetic interactions. We propose that the relationship between epigenetics and classical drug response may be examined using data already available by (1) finding regions of epigenetic variance, (2) pinpointing key epigenetic biomarkers within these regions, and (3) mapping these biomarkers to a drug-response phenotype. This approach expands on existing knowledge to generate putative pharmacoepigenetic relationships, which can be tested experimentally. Epigenetic modifications are involved in disease and drug response. Therefore, understanding how epigenetic drivers impact the response to classical drugs is important for improving drug design and administration to better treat disease.
Collapse
Affiliation(s)
- Delaney A Smith
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marie C Sadler
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- University Center for Primary Care and Public Health, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Yu Q, Yang J, Wang J, Yu R, Li J, Cheng J, Hu Y, Li Z, Zheng N, Zhang Z, Li X, Wang Y, Du W, Zhu K, Chen X, Su J. DNA methylation profile in the whole blood of acute coronary syndrome patients with aspirin resistance. J Clin Lab Anal 2022; 37:e24821. [PMID: 36550638 PMCID: PMC9833987 DOI: 10.1002/jcla.24821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aspirin resistance (AR) results in major adverse cardiovascular events, and DNA methylation might participate in the regulation of this pathological process. METHODS In present study, a sum of 35 patients with AR and 35 non-AR (NAR) controls were enrolled. Samples from 5 AR and 5 NAR were evaluated in an 850 BeadChip DNA methylation assay, and another 30 AR versus 30 NAR were evaluated to validate the differentially methylated CpG loci (DML). Then, qRT-PCR was used to investigate the target mRNA expression of genes at CpG loci. Finally, Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to reveal the enriched pathways. RESULTS The AR and NAR groups displayed significant differences in DNA methylation at 7707 positions, with 270 hypermethylated sites (e.g., cg09555818 located in APOC2) and 7437 sites hypomethylated sites (e.g., cg26828689 located in SLC12A5). Six DML were validated by pyrosequencing, and it was confirmed that DNA methylation (cg16391727, cg21008208, cg21293749, and cg13945576) was related to the increasing risk of AR. The relative mRNA expression of the ROR1 gene was also associated with AR (p = 0.007), suggesting that the change of cg21293749 in DNA methylation might lead to differential ROR1 mRNA expression, ultimately resulting in AR. Furthermore, the identified differentially methylated sites were associated with the molecular pathways such as circadian rhythms and insulin secretion. CONCLUSION Hence, the distinct DNA methylation might play a vital role in the biological regulation of AR through the pathways such as circadian rhythms.
Collapse
Affiliation(s)
- Qinglin Yu
- Department of Traditional Chinese Internal MedicineNingbo No. 1 HospitalNingboChina
| | - Jin Yang
- Department of GeriatricsNingbo No. 1 HospitalNingboChina
| | - Jiang Wang
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Ruoyan Yu
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Jiyi Li
- Department of CardiologyYuyao People's Hospital of Zhejiang ProvinceYuyaoChina
| | - Ji Cheng
- Department of Emergency, HwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Yingchu Hu
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Zhenwei Li
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Nan Zheng
- Department of Cardiology, HwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Zhaoxia Zhang
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Xiaojing Li
- Department of GeriatricsNingbo No. 1 HospitalNingboChina
| | - Yong Wang
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Weiping Du
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Keqi Zhu
- Department of Traditional Chinese Internal MedicineNingbo No. 1 HospitalNingboChina
| | - Xiaomin Chen
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Jia Su
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
6
|
Hao X, Li Y, Bian J, Zhang Y, He S, Yu F, Feng Y, Huang L. Impact of DNA methylation on ADME gene expression, drug disposition and efficacy. Drug Metab Rev 2022; 54:194-206. [PMID: 35412942 DOI: 10.1080/03602532.2022.2064488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interindividual differences in drug response have always existed in clinical treatment. Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) play an important role in the process of pharmacokinetics. The effects of genetic polymorphism and nuclear receptors on the expression of drug metabolism enzymes and transporters can only explain some individual differences in clinical treatment. Several key ADME genes have been demonstrated to be regulated by epigenetic mechanisms that can potentially affect interindividual variability in medical treatment. Emerging studies have focused on the importance of DNA methylation for ADME gene expression and for drug response. Among them, the most studied is anti-tumor drugs, and followed by anti-tuberculous and anti-platelet drugs. Therefore, we provide an epigenetics perspective on variability in drug response. The review summarizes the correlation between ADME gene expression and DNA methylation, including the exact methylation locations, and focuses on the corresponding drug disposition and effects to illuminate interindividual differences in clinical medication.
Collapse
Affiliation(s)
- Xu Hao
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jialu Bian
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| | - Ying Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| | - Shiyu He
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| | - Feng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044 China
| |
Collapse
|