1
|
Fernández-Pérez I, Jiménez-Balado J, Macias-Gómez A, Suárez-Pérez A, Vallverdú-Prats M, Pérez-Giraldo A, Viles-García M, Peris-Subiza J, Vidal-Notari S, Giralt-Steinhauer E, Guisado-Alonso D, Esteller M, Rodriguez-Campello A, Jiménez-Conde J, Ois A, Cuadrado-Godia E. Blood DNA Methylation Analysis Reveals a Distinctive Epigenetic Signature of Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:715-727. [PMID: 38649590 DOI: 10.1007/s12975-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Vasospasm is a potentially preventable cause of poor prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH). Epigenetics might provide insight on its molecular mechanisms. We aimed to analyze the association between differential DNA methylation (DNAm) and development of vasospasm. We conducted an epigenome-wide association study in 282 patients with aSAH admitted to our hospital. DNAm was assessed with the EPIC Illumina chip (> 850 K CpG sites) in whole-blood samples collected at hospital admission. We identified differentially methylated positions (DMPs) at the CpG level using Cox regression models adjusted for potential confounders, and then we used the DMP results to find differentially methylated regions (DMRs) and enriched biological pathways. A total of 145 patients (51%) experienced vasospasm. In the DMP analysis, we identified 31 CpGs associated with vasospasm at p-value < 10-5. One of them (cg26189827) was significant at the genome-wide level (p-value < 10-8), being hypermethylated in patients with vasospasm and annotated to SUGCT gene, mainly expressed in arteries. Region analysis revealed 13 DMRs, some of them annotated to interesting genes such as POU5F1, HLA-DPA1, RUFY1, and CYP1A1. Functional enrichment analysis showed the involvement of biological processes related to immunity, inflammatory response, oxidative stress, endothelial nitric oxide, and apoptosis. Our findings show, for the first time, a distinctive epigenetic signature of vasospasm in aSAH, establishing novel links with essential biological pathways, including inflammation, immune responses, and oxidative stress. Although further validation is required, our results provide a foundation for future research into the complex pathophysiology of vasospasm.
Collapse
Affiliation(s)
- Isabel Fernández-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Joan Jiménez-Balado
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain.
| | - Adrià Macias-Gómez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Antoni Suárez-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Marta Vallverdú-Prats
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | | | - Marc Viles-García
- Neuroradiology Department, Hospital del Mar, Barcelona, Catalunya, Spain
| | | | | | - Eva Giralt-Steinhauer
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Daniel Guisado-Alonso
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Research Institute Against Leukemia Josep Carreras, Badalona, Catalunya, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalunya, Spain
| | - Ana Rodriguez-Campello
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Jordi Jiménez-Conde
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Angel Ois
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Elisa Cuadrado-Godia
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| |
Collapse
|
2
|
Kumar M, Sharma T, Patel K, Chinnapparaj S, Dixit R, Gendle C, Aggarwal A, Takkar A, Gupta T, Singla N, Pal A, Salunke P, Dhandapani S, Chabra R, Chatterjee A, Gowda H, Bhagat H. Molecular Basis of Cerebral Vasospasm: What Can We Learn from Transcriptome and Temporal Gene Expression Profiling in Intracranial Aneurysm? OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:234-245. [PMID: 38717843 DOI: 10.1089/omi.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cerebral vasospasm (CV) is a significant complication following aneurysmal subarachnoid hemorrhage (aSAH), and lacks a comprehensive molecular understanding. Given the temporal trajectory of intracranial aneurysm (IA) formation, its rupture, and development of CV, altered gene expression might be a molecular substrate that runs through these clinical events, influencing both disease inception and progression. Utilizing RNA-Seq, we analyzed tissue samples from ruptured IAs with and without vasospasm to identify the dysregulated genes. In addition, temporal gene expression analysis was conducted. We identified seven dysregulated genes in patients with ruptured IA with vasospasm when compared with those without vasospasm. We found 192 common genes when the samples of each clinical subset of patients with IA, that is, unruptured aneurysm, ruptured aneurysm without vasospasm, and ruptured aneurysm with vasospasm, were compared with control samples. Among these common genes, TNFSF13B, PLAUR, OSM, and LAMB3 displayed temporal expression (progressive increase) with the pathological progression of disease that is formation of aneurysm, its rupture, and consequently the development of vasospasm. We validated the temporal gene expression pattern of OSM at both the transcript and protein levels and OSM emerges as a crucial gene implicated in the pathological progression of disease. In addition, RSAD2 and ATP1A2 appear to be pivotal genes for CV development. To the best of our knowledge, this is the first study to compare the transcriptome of aneurysmal tissue samples of aSAH patients with and without CV. The findings collectively provide new insights on the molecular basis of IA and CV and new leads for translational research.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravi Dixit
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandrashekhar Gendle
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pravin Salunke
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajesh Chabra
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Alsbrook DL, Di Napoli M, Bhatia K, Desai M, Hinduja A, Rubinos CA, Mansueto G, Singh P, Domeniconi GG, Ikram A, Sabbagh SY, Divani AA. Pathophysiology of Early Brain Injury and Its Association with Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Review of Current Literature. J Clin Med 2023; 12:jcm12031015. [PMID: 36769660 PMCID: PMC9918117 DOI: 10.3390/jcm12031015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Background: Delayed cerebral ischemia (DCI) is a common and serious complication of aneurysmal subarachnoid hemorrhage (aSAH). Though many clinical trials have looked at therapies for DCI and vasospasm in aSAH, along with reducing rebleeding risks, none have led to improving outcomes in this patient population. We present an up-to-date review of the pathophysiology of DCI and its association with early brain injury (EBI). Recent Findings: Recent studies have demonstrated that EBI, as opposed to delayed brain injury, is the main contributor to downstream pathophysiological mechanisms that play a role in the development of DCI. New predictive models, including advanced monitoring and neuroimaging techniques, can help detect EBI and improve the clinical management of aSAH patients. Summary: EBI, the severity of subarachnoid hemorrhage, and physiological/imaging markers can serve as indicators for potential early therapeutics in aSAH. The microcellular milieu and hemodynamic pathomechanisms should remain a focus of researchers and clinicians. With the advancement in understanding the pathophysiology of DCI, we are hopeful that we will make strides toward better outcomes for this unique patient population.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, 67039 L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Masoom Desai
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Clio A Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences, University of Campania, 80138 Naples, Italy
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India
| | - Gustavo G Domeniconi
- Unidad de Cuidados Intensivos, Sanatorio de la Trinidad San Isidro, Buenos Aires 1640, Argentina
| | - Asad Ikram
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|