1
|
Herrera Quijano MA, Sharma N, Morissette Martin P, Séguin CA, Flynn LE. Development of 2-D and 3-D culture platforms derived from decellularized nucleus pulposus. Front Bioeng Biotechnol 2022; 10:937239. [PMID: 36237211 PMCID: PMC9551564 DOI: 10.3389/fbioe.2022.937239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bioscaffolds derived from the extracellular matrix (ECM) have shown the capacity to promote regeneration by providing tissue-specific biological instructive cues that can enhance cell survival and direct lineage-specific differentiation. This study focused on the development and characterization of two-dimensional (2-D) and three-dimensional (3-D) cell culture platforms incorporating decellularized nucleus pulposus (DNP). First, a detergent-free protocol was developed for decellularizing bovine nucleus pulposus (NP) tissues that was effective at removing cellular content while preserving key ECM constituents including collagens, glycosaminoglycans, and the cell-adhesive glycoproteins laminin and fibronectin. Next, novel 2-D coatings were generated using the DNP or commercially-sourced bovine collagen type I (COL) as a non-tissue-specific control. In addition, cryo-milled DNP or COL particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels as a 3-D cell culture platform for exploring the effects of ECM particle composition. Culture studies showed that the 2-D coatings derived from the DNP could support cell attachment and growth, but did not maintain or rescue the phenotype of primary bovine NP cells, which de-differentiated when serially passaged in monolayer culture. Similarly, while bovine NP cells remained highly viable following encapsulation and 14 days of culture within the hydrogel composites, the incorporation of DNP particles within the MCS hydrogels was insufficient to maintain or rescue changes in NP phenotype associated with extended in vitro culture based on gene expression patterns. Overall, DNP produced with our new decellularization protocol was successfully applied to generate both 2-D and 3-D bioscaffolds; however, further studies are required to assess if these platforms can be combined with additional components of the endogenous NP microenvironment to stimulate regeneration or lineage-specific cell differentiation.
Collapse
Affiliation(s)
- Marco A. Herrera Quijano
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Nadia Sharma
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cheryle A. Séguin
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| |
Collapse
|
2
|
Chuah YJ, Wu Y, Chia YQ, Cheong MLS, Jun Jie Joshua N, Kang Y, Hee HT. The co-influence of hyaluronic acid and collagen on the development of an engineered annulus tissue model with bone marrow stromal cells. Biomed Mater 2022; 17. [PMID: 35764078 DOI: 10.1088/1748-605x/ac7cac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Inveterbral disc degeneration is a significant musculoskeletal disease that brings huge burden of pain, disability, psychological and social consequences to the affected population worldwide with treatments that only alleviate the pain but does not address the underlying biological problems. For the past decades, tissue engineering of the disc has been investigated with Annulus Fibrosus been one of the complicated disc component to be engineered. With the limited source of annulus cells, bone marrow stromal cells have been frequently investigated as a potental cell candidate to develop an annulus fibrosus-like tissue which often require a multi-disclipinary effort to achieve. The extracellular matrix of Annulus Fibrosus is largely make up of collagen and proteoglycan which is still unclear how these matrix proteins could influence the bone marrow stromal cells towards constructing a AF-like tissue. In this study, we adopted a coiled hydrogel microfiber that resembles the micro-architecture of the native AF tissue to encapsulate bone marrow stromal cells and incorporated collagen type 1 and hyaluronic acid which later demonstrated that the co-presence of hyaluronic acid and collagen could potentially upregulated AF-associated biomarkers and protease expression which are critical for later development of an engineered AF tissue construct.
Collapse
Affiliation(s)
- Yon Jin Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 61 Nanyang Drive, Singapore, 637335, SINGAPORE
| | - Yingnan Wu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, SINGAPORE
| | - Yan Qing Chia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, SINGAPORE
| | - Mei Ling Shirlynn Cheong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, SINGAPORE
| | - Ng Jun Jie Joshua
- School of Chemical & Life Sciences, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore, 139651, SINGAPORE
| | - Yuejun Kang
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Chongqing, Chongqing, 400715, CHINA
| | - Hwan Tak Hee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, SINGAPORE
| |
Collapse
|
3
|
Ashraf S, Chatoor K, Chong J, Pilliar R, Santerre P, Kandel R. Transforming Growth Factor β Enhances Tissue Formation by Passaged Nucleus Pulposus Cells In Vitro. J Orthop Res 2020; 38:438-449. [PMID: 31529713 DOI: 10.1002/jor.24476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
The nucleus pulposus (NP) is composed of NP and notochord cell. It is a paucicellular tissue and if it is to be used as a source of cells for tissue engineering the cell number will have to be expanded by cell passaging. The hypothesis of this study is that passaged NP and notochordal cells grown in three-dimensional (3D) culture in the presence of transforming growth factor β (TGFβ) will show enhanced NP tissue formation compared with cells grown in the absence of this growth factor. Bovine NP cells isolated by sequential enzymatic digestion from caudal intervertebral discs were either placed directly in 3D culture (P0) or serially passaged up to passage 3 (P3) prior to placement in 3D culture. Serial cell passage in monolayer culture led to de-differentiation, increased senescence and oxidative stress and decreases in the gene expression of NP and notochordal associated markers and increases in de-differentiation markers. The NP tissue regeneration capacity of cells in 3D culture decreases with passaging as indicated by diminished tissue thickness and total collagen content when compared with tissues formed by P0 cells. Immunohistochemical studies showed that type II collagen accumulation appeared to decrease. TGFβ1 or TGFβ3 treatment enhanced the ability of cells at each passage to form tissue, in part by decreasing cell death. However, neither TGFβ1 nor TGFβ3 were able to restore the notochordal phenotype. Although TGFβ1/3 recovered NP tissue formation by passaged cells, to generate NP in vitro that resembles the native tissue will require identification of conditions facilitating retention of notochordal cell differentiation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:438-449, 2020.
Collapse
Affiliation(s)
- Sajjad Ashraf
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kenny Chatoor
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Jasmine Chong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Robert Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Pathology and Laboratory Medicine, Sinai Health System and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Kim JS, Kwon D, Cha BH, Moon BK, Jeong Y, Han IB, Park H, Lee SH. Restoration of chondrogenic properties of degenerative nucleus pulposus cells by repeated co-culture with adipose-derived stem cells. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|